File size: 22,585 Bytes
82d84c7
db0b943
bb5eec7
e8589a9
bb5eec7
255428d
f6efb83
f9e956a
ed04336
db0b943
 
bb5eec7
daa3242
 
 
00bcf43
 
54fa492
 
 
db0b943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae574b
54fa492
 
9ae574b
54fa492
9ae574b
 
 
 
 
 
 
 
 
 
 
 
 
ec82b9a
 
9ae574b
 
ec82b9a
 
 
8a3861b
 
ec82b9a
 
 
8a3861b
ec82b9a
 
8a3861b
 
9ae574b
8a3861b
ec82b9a
8a3861b
 
00bcf43
 
db0b943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7b207
db0b943
 
3a7b207
 
 
db0b943
 
3a7b207
db0b943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba5119
 
 
 
db0b943
f3e3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba5119
 
 
 
 
 
db0b943
fba5119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0b943
 
 
82d84c7
984d858
8cb83ca
984d858
db0b943
984d858
 
75020f1
7254b3e
 
 
c024962
8cb83ca
c024962
bb5eec7
8cb83ca
bb5eec7
 
 
c024962
8cb83ca
c024962
bb5eec7
8cb83ca
255428d
8cb83ca
d364129
932f0ad
82d84c7
3a7b207
 
 
 
 
 
82d84c7
00bcf43
ede3b41
d74007c
00bcf43
ede3b41
 
00bcf43
 
 
 
 
 
 
 
 
54fa492
 
 
 
 
 
 
 
00bcf43
4b8e08c
54fa492
1f0d5ee
54fa492
 
 
 
1f0d5ee
00bcf43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ede3b41
d74007c
00bcf43
ede3b41
82d84c7
daa3242
11e9f13
daa3242
 
 
 
 
 
 
 
ec82b9a
daa3242
 
 
 
 
 
ec82b9a
 
 
 
 
 
 
 
 
 
daa3242
ede3b41
00bcf43
 
 
 
ede3b41
 
 
 
 
daa3242
 
6099043
 
 
 
 
e4c649c
6099043
daa3242
 
 
 
 
 
 
 
11e9f13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
996be5a
 
 
 
 
 
 
 
 
daa3242
996be5a
 
 
 
 
 
 
 
 
daa3242
 
 
95321db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa3242
00bcf43
d364129
 
 
6099043
 
00bcf43
ede3b41
00bcf43
 
 
 
 
 
 
 
 
ec82b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00bcf43
ec82b9a
00bcf43
ec82b9a
00bcf43
 
ec82b9a
00bcf43
ec82b9a
 
00bcf43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6099043
00bcf43
ede3b41
6099043
d6d864a
daa3242
00bcf43
7e29701
00bcf43
 
 
82d84c7
6099043
54fa492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3861b
54fa492
8a3861b
 
54fa492
 
00bcf43
 
 
 
 
 
8a3861b
00bcf43
9ae574b
00bcf43
9ae574b
3a7b207
 
8a3861b
 
 
3a7b207
 
00bcf43
 
95321db
3a7b207
00bcf43
 
3a7b207
 
95321db
21d0c24
 
95321db
3a7b207
 
7254b3e
 
3a7b207
 
7254b3e
 
3a7b207
21d0c24
3a7b207
d364129
 
 
21d0c24
3a7b207
 
 
 
 
 
 
 
 
 
 
75020f1
3a7b207
 
 
 
b348126
 
3a7b207
 
 
 
 
 
 
3102246
 
3a7b207
 
 
3102246
 
3a7b207
 
3102246
21d0c24
3a7b207
21d0c24
b348126
3a7b207
b348126
3102246
3a7b207
 
3102246
21d0c24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
import gradio as gr
from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.llama_cpp import LlamaCPP
from .parse_tabular import create_symptom_index  # Use relative import
import json
import psutil
from typing import Tuple, Dict
import torch
from gtts import gTTS
import io
import base64
import numpy as np
from transformers.pipelines import pipeline  # Changed from transformers import pipeline
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor
import torchaudio
import torchaudio.transforms as T

# Model options mapped to their requirements
MODEL_OPTIONS = {
    "tiny": {
        "name": "TinyLlama-1.1B-Chat-v1.0.Q4_K_M.gguf",
        "repo": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
        "vram_req": 2,  # GB
        "ram_req": 4    # GB
    },
    "small": {
        "name": "phi-2.Q4_K_M.gguf",
        "repo": "TheBloke/phi-2-GGUF",
        "vram_req": 4,
        "ram_req": 8
    },
    "medium": {
        "name": "mistral-7b-instruct-v0.1.Q4_K_M.gguf",
        "repo": "TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
        "vram_req": 6,
        "ram_req": 16
    }
}

# Initialize Whisper components globally (these are lightweight)
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base.en")
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-base.en")
processor = WhisperProcessor(feature_extractor, tokenizer)

def get_asr_pipeline():
    """Lazy load ASR pipeline with proper configuration."""
    global transcriber
    if "transcriber" not in globals():
        transcriber = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-base.en",
            chunk_length_s=30,
            stride_length_s=5,
            device="cpu",
            torch_dtype=torch.float32
        )
    return transcriber

# Audio preprocessing function
def process_audio(audio_array, sample_rate):
    """Pre-process audio for Whisper."""
    if audio_array.ndim > 1:
        audio_array = audio_array.mean(axis=1)
    
    # Convert to tensor for resampling
    audio_tensor = torch.FloatTensor(audio_array)
    
    # Resample to 16kHz if needed
    if sample_rate != 16000:
        resampler = T.Resample(sample_rate, 16000)
        audio_tensor = resampler(audio_tensor)
    
    # Normalize
    audio_tensor = audio_tensor / torch.max(torch.abs(audio_tensor))
    
    # Convert back to numpy array and return in correct format
    return {
        "raw": audio_tensor.numpy(),  # Key must be "raw"
        "sampling_rate": 16000        # Key must be "sampling_rate"
    }

def get_system_specs() -> Dict[str, float]:
    """Get system specifications."""
    # Get RAM
    ram_gb = psutil.virtual_memory().total / (1024**3)
    
    # Get GPU info if available
    gpu_vram_gb = 0
    if torch.cuda.is_available():
        try:
            # Query GPU memory in bytes and convert to GB
            gpu_vram_gb = torch.cuda.get_device_properties(0).total_memory / (1024**3)
        except Exception as e:
            print(f"Warning: Could not get GPU memory: {e}")
    
    return {
        "ram_gb": ram_gb,
        "gpu_vram_gb": gpu_vram_gb
    }

def select_best_model() -> Tuple[str, str]:
    """Select the best model based on system specifications."""
    specs = get_system_specs()
    print(f"\nSystem specifications:")
    print(f"RAM: {specs['ram_gb']:.1f} GB")
    print(f"GPU VRAM: {specs['gpu_vram_gb']:.1f} GB")
    
    # Prioritize GPU if available
    if specs['gpu_vram_gb'] >= 4:  # You have 6GB, so this should work
        model_tier = "small"  # phi-2 should work well on RTX 2060
    elif specs['ram_gb'] >= 8:
        model_tier = "small"
    else:
        model_tier = "tiny"
    
    selected = MODEL_OPTIONS[model_tier]
    print(f"\nSelected model tier: {model_tier}")
    print(f"Model: {selected['name']}")
    
    return selected['name'], selected['repo']

# Set up model paths
MODEL_NAME, REPO_ID = select_best_model()
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
MODEL_DIR = os.path.join(BASE_DIR, "models")
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)

from typing import Optional

def ensure_model(model_name: Optional[str] = None, repo_id: Optional[str] = None) -> str:
    """Ensures model is available, downloading only if needed."""
    
    # Determine environment and set cache directory
    if os.path.exists("/home/user"):
        # HF Space environment
        cache_dir = "/home/user/.cache/models"
    else:
        # Local development environment
        cache_dir = os.path.join(BASE_DIR, "models")
    
    # Create cache directory if it doesn't exist
    try:
        os.makedirs(cache_dir, exist_ok=True)
    except Exception as e:
        print(f"Warning: Could not create cache directory {cache_dir}: {e}")
        # Fall back to temporary directory if needed
        cache_dir = os.path.join("/tmp", "models")
        os.makedirs(cache_dir, exist_ok=True)
    
    # Get model details
    if not model_name or not repo_id:
        model_option = MODEL_OPTIONS["small"]  # default to small model
        model_name = model_option["name"]
        repo_id = model_option["repo"]
    
    # Ensure model_name and repo_id are not None
    if model_name is None:
        raise ValueError("model_name cannot be None")
    if repo_id is None:
        raise ValueError("repo_id cannot be None")
    # Check if model already exists in cache
    model_path = os.path.join(cache_dir, model_name)
    if os.path.exists(model_path):
        print(f"\nUsing cached model: {model_path}")
        return model_path
        
    print(f"\nDownloading model {model_name} from {repo_id}...")
    try:
        model_path = hf_hub_download(
            repo_id=repo_id,
            filename=model_name,
            cache_dir=cache_dir,
            local_dir=cache_dir
        )
        print(f"Model downloaded successfully to {model_path}")
        return model_path
    except Exception as e:
        print(f"Error downloading model: {str(e)}")
        raise

# Ensure model is downloaded
model_path = ensure_model()

# Configure local LLM with LlamaCPP
print("\nInitializing LLM...")
llm = LlamaCPP(
    model_path=model_path,
    temperature=0.7,
    max_new_tokens=256,
    context_window=2048,
    verbose=False    # Reduce logging
    # n_batch and n_threads are not valid parameters for LlamaCPP and should not be used.
    # If you encounter segmentation faults, try reducing context_window or check your system resources.
)
print("LLM initialized successfully")

# Configure global settings
print("\nConfiguring settings...")
Settings.llm = llm
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-MiniLM-L6-v2"
)
print("Settings configured")

# Create the index at startup
print("\nCreating symptom index...")
symptom_index = create_symptom_index()
print("Index created successfully")
print("Loaded symptom_index:", type(symptom_index))

# --- System prompt ---
SYSTEM_PROMPT = """
You are a medical assistant helping a user narrow down to the most likely ICD-10 code.
At each turn, EITHER ask one focused clarifying question (e.g. "Is your cough dry or productive?")
or, if you have enough info, output a final JSON with fields:
{"diagnoses":[…], "confidences":[…]}.
"""

def process_speech(audio_data, history):
    """Process speech input and convert to text."""
    try:
        if not audio_data:
            return []
            
        if isinstance(audio_data, tuple) and len(audio_data) == 2:
            sample_rate, audio_array = audio_data
            
            # Audio preprocessing
            if audio_array.ndim > 1:
                audio_array = audio_array.mean(axis=1)
            audio_array = audio_array.astype(np.float32)
            audio_array /= np.max(np.abs(audio_array))
            
            # Ensure correct sampling rate
            if sample_rate != 16000:
                resampler = T.Resample(sample_rate, 16000)
                audio_tensor = torch.FloatTensor(audio_array)
                audio_tensor = resampler(audio_tensor)
                audio_array = audio_tensor.numpy()
                sample_rate = 16000
            
            # Transcribe with error handling

                # Format dictionary correctly with required keys
                input_features = {
                    "raw": audio_array,
                    "sampling_rate": sample_rate
                }
                
                result = transcriber(input_features)
                
                # Handle different result types
                if isinstance(result, dict) and "text" in result:
                    transcript = result["text"].strip()
                elif isinstance(result, str):
                    transcript = result.strip()
                else:
                    print(f"Unexpected transcriber result type: {type(result)}")
                    return []
                
                if not transcript:
                    print("No transcription generated")
                    return []
                    
                # Query symptoms with transcribed text
                diagnosis_query = f"""
                Given these symptoms: '{transcript}'
                Identify the most likely ICD-10 diagnoses and key questions.
                Focus on clinical implications.
                """
                
                response = symptom_index.as_query_engine().query(diagnosis_query)
                
                return [
                    {"role": "user", "content": transcript},
                    {"role": "assistant", "content": json.dumps({
                        "diagnoses": [],
                        "confidences": [],
                        "follow_up": str(response)
                    })}
                ]
                
        else:
            print(f"Invalid audio format: {type(audio_data)}")
            return []
            
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return []

# Build enhanced Gradio interface
with gr.Blocks(theme="default") as demo:
    gr.Markdown("""
    # πŸ₯ Medical Symptom to ICD-10 Code Assistant
    
    ## About
    This application is part of the Agents+MCP Hackathon. It helps medical professionals 
    and patients understand potential diagnoses based on described symptoms.
    
    ### How it works:
    1. Either click the record button and describe your symptoms or type them into the textbox
    2. The AI will analyze your description and suggest possible diagnoses
    3. Answer follow-up questions to refine the diagnosis
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            # Add text input above microphone
            with gr.Row():
                text_input = gr.Textbox(
                    label="Type your symptoms",
                    placeholder="Or type your symptoms here...",
                    lines=3
                )
                submit_btn = gr.Button("Submit", variant="primary")
            
            # Existing microphone row
            with gr.Row():
                microphone = gr.Audio(
                    sources=["microphone"],
                    streaming=True,
                    type="numpy",
                    label="Describe your symptoms"
                )
                transcript_box = gr.Textbox(
                    label="Transcribed Text",
                    interactive=False,
                    show_label=True
                )
                clear_btn = gr.Button("Clear Chat", variant="secondary")
            
            chatbot = gr.Chatbot(
                label="Medical Consultation",
                height=500,
                container=True,
                type="messages"  # This is now properly supported by our message format
            )
                
        with gr.Column(scale=1):
            with gr.Accordion("Advanced Settings", open=False):
                api_key = gr.Textbox(
                    label="OpenAI API Key (optional)",
                    type="password",
                    placeholder="sk-..."
                )
                
                with gr.Row():
                    with gr.Column():
                        modal_key = gr.Textbox(
                            label="Modal Labs API Key",
                            type="password",
                            placeholder="mk-..."
                        )
                        anthropic_key = gr.Textbox(
                            label="Anthropic API Key",
                            type="password",
                            placeholder="sk-ant-..."
                        )
                        mistral_key = gr.Textbox(
                            label="MistralAI API Key",
                            type="password",
                            placeholder="..."
                        )
                        
                    with gr.Column():
                        nebius_key = gr.Textbox(
                            label="Nebius API Key",
                            type="password",
                            placeholder="..."
                        )
                        hyperbolic_key = gr.Textbox(
                            label="Hyperbolic Labs API Key",
                            type="password",
                            placeholder="hyp-..."
                        )
                        sambanova_key = gr.Textbox(
                            label="SambaNova API Key",
                            type="password",
                            placeholder="..."
                        )
                
                with gr.Row():
                    model_selector = gr.Dropdown(
                        choices=["OpenAI", "Modal", "Anthropic", "MistralAI", "Nebius", "Hyperbolic", "SambaNova"],
                        value="OpenAI",
                        label="Model Provider"
                    )
                    temperature = gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=0.7,
                        label="Temperature"
                    )
    # self promotion at bottom of page
    gr.Markdown("""
    ---
    ### πŸ‘‹ About the Creator
    
    Hi! I'm Graham Paasch, an experienced technology professional!
    
    πŸŽ₯ **Check out my YouTube channel** for more tech content:  
    [Subscribe to my channel](https://www.youtube.com/channel/UCg3oUjrSYcqsL9rGk1g_lPQ)
    
    πŸ’Ό **Looking for a skilled developer?**  
    I'm currently seeking new opportunities! View my experience and connect on [LinkedIn](https://www.linkedin.com/in/grahampaasch/)
    
    ⭐ If you found this tool helpful, please consider:
    - Subscribing to my YouTube channel
    - Connecting on LinkedIn
    - Sharing this tool with others in healthcare tech
    """)

    # Event handlers
    clear_btn.click(lambda: None, None, chatbot, queue=False)
    
    def format_response_for_user(response_dict):
        """Format the assistant's response dictionary into a user-friendly string."""
        diagnoses = response_dict.get("diagnoses", [])
        confidences = response_dict.get("confidences", [])
        follow_up = response_dict.get("follow_up", "")
        result = ""
        if diagnoses:
            result += "Possible Diagnoses:\n"
            for i, diag in enumerate(diagnoses):
                conf = f" ({confidences[i]*100:.1f}%)" if i < len(confidences) else ""
                result += f"- {diag}{conf}\n"
        if follow_up:
            result += f"\nFollow-up: {follow_up}"
        return result.strip()

    def enhanced_process_speech(audio_path, history, api_key=None, model_tier="small", temp=0.7):
        """Handle streaming speech processing and chat updates."""

        transcriber = get_asr_pipeline()

        if not audio_path:
            return history

        try:
            if isinstance(audio_path, tuple) and len(audio_path) == 2:
                sample_rate, audio_array = audio_path
                
                # Audio preprocessing
                if audio_array.ndim > 1:
                    audio_array = audio_array.mean(axis=1)
                audio_array = audio_array.astype(np.float32)
                audio_array /= np.max(np.abs(audio_array))

                # Ensure correct sampling rate
                if sample_rate != 16000:
                    resampler = T.Resample(
                        orig_freq=sample_rate, 
                        new_freq=16000
                    )
                    audio_tensor = torch.FloatTensor(audio_array)
                    audio_tensor = resampler(audio_tensor)
                    audio_array = audio_tensor.numpy()
                    sample_rate = 16000

                # Format input dictionary exactly as required
                transcriber_input = {
                    "raw": audio_array,
                    "sampling_rate": sample_rate
                }

                # Get transcription from Whisper
                result = transcriber(transcriber_input)

                # Extract text from result
                transcript = ""
                if isinstance(result, dict):
                    transcript = result.get("text", "").strip()
                elif isinstance(result, str):
                    transcript = result.strip()
                
                if not transcript:
                    return history

                # Process the symptoms
                diagnosis_query = f"""
                Based on these symptoms: '{transcript}'
                Provide relevant ICD-10 codes and diagnostic questions.
                """
                response = symptom_index.as_query_engine().query(diagnosis_query)

                # Format and return chat messages
                return history + [
                    {"role": "user", "content": transcript},
                    {"role": "assistant", "content": format_response_for_user({
                        "diagnoses": [],
                        "confidences": [],
                        "follow_up": str(response)
                    })}
                ]

        except Exception as e:
            print(f"Streaming error: {str(e)}")
            return history

    microphone.stream(
        fn=enhanced_process_speech,
        inputs=[microphone, chatbot, api_key, model_selector, temperature],
        outputs=chatbot,
        show_progress="hidden",
        api_name=False,
        queue=True  # Enable queuing for better stream handling
    )
    
    def process_audio(audio_array, sample_rate):
        """Pre-process audio for Whisper."""
        if audio_array.ndim > 1:
            audio_array = audio_array.mean(axis=1)
        
        # Convert to tensor for resampling
        audio_tensor = torch.FloatTensor(audio_array)
        
        # Resample to 16kHz if needed
        if sample_rate != 16000:
            resampler = T.Resample(sample_rate, 16000)
            audio_tensor = resampler(audio_tensor)
            
        # Normalize
        audio_tensor = audio_tensor / torch.max(torch.abs(audio_tensor))
        
        # Convert back to numpy array and return in correct format
        return {
            "raw": audio_tensor.numpy(),  # Key must be "raw"
            "sampling_rate": 16000        # Key must be "sampling_rate"
        }

    # Update transcription handler
    def update_live_transcription(audio):
        """Real-time transcription updates."""
        if not audio or not isinstance(audio, tuple):
            return ""
        
        try:
            sample_rate, audio_array = audio
            features = process_audio(audio_array, sample_rate)
            
            asr = get_asr_pipeline()
            result = asr(features)
            
            return result.get("text", "").strip() if isinstance(result, dict) else str(result).strip()
        except Exception as e:
            print(f"Transcription error: {str(e)}")
            return ""

    microphone.stream(
        fn=update_live_transcription,
        inputs=[microphone],
        outputs=transcript_box,
        show_progress="hidden",
        queue=True
    )
    
    clear_btn.click(
        fn=lambda: (None, "", ""),
        outputs=[chatbot, transcript_box, text_input],
        queue=False
    )
    
    def cleanup_memory():
        """Release unused memory (placeholder for future memory management)."""
        import gc
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    def process_text_input(text, history):
        """Process text input with memory management."""

        print("process_text_input received:", text)

        if not text:
            return history, ""  # Return tuple to clear input

        try:
            # Process the symptoms using the configured LLM
            prompt = f"""Given these symptoms: '{text}'
            Please provide:
            1. Most likely ICD-10 codes
            2. Confidence levels for each diagnosis
            3. Key follow-up questions

            Format as JSON with diagnoses, confidences, and follow_up fields."""
            
            response = llm.complete(prompt)
            
            try:
                # Try to parse as JSON first
                result = json.loads(response.text)
            except json.JSONDecodeError:
                # If not JSON, wrap in our format
                result = {
                    "diagnoses": [],
                    "confidences": [],
                    "follow_up": str(response.text)[:1000]  # Limit response length
                }

            new_history = history + [
                {"role": "user", "content": text},
                {"role": "assistant", "content": format_response_for_user(result)}
            ]
            return new_history, ""  # Return empty string to clear input
        except Exception as e:
            print(f"Error processing text: {str(e)}")
            return history, text  # Keep text on error

    # Update the submit button handler
    submit_btn.click(
        fn=process_text_input,
        inputs=[text_input, chatbot],
        outputs=[chatbot, text_input],
        queue=True
    ).success(  # Changed from .then to .success for better error handling
        fn=cleanup_memory,
        inputs=None,
        outputs=None,
        queue=False
    )