iLearn / memory_logic.py
broadfield-dev's picture
Create memory_logic.py
8c665a7 verified
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
# Conditionally import heavy dependencies
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
# Suppress verbose logs from dependencies
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name): # Check if logger exists
logging.getLogger(lib_name).setLevel(logging.WARNING)
# --- Configuration (Read directly from environment variables) ---
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
# --- Globals for RAG within this module ---
_embedder = None
_dimension = 384 # Default, will be set by embedder
_faiss_memory_index = None
_memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
_faiss_rules_index = None
_rules_items_list = [] # Stores rule text strings
_initialized = False
_init_lock = threading.Lock()
# --- Helper: SQLite Connection ---
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
# Stores JSON string of the memory object
cursor.execute("""
CREATE TABLE IF NOT EXISTS memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_json TEXT NOT NULL,
# Optionally add embedding here if not using separate FAISS index
# embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
# Stores the rule text directly
cursor.execute("""
CREATE TABLE IF NOT EXISTS rules (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_text TEXT NOT NULL UNIQUE,
# embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
logger.info("SQLite tables for memories and rules checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
# --- Initialization ---
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized:
logger.info("Memory system already initialized.")
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
# 1. Load Sentence Transformer Model (always needed for semantic operations)
if not SentenceTransformer or not faiss or not np:
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
_initialized = False # Mark as not properly initialized
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
_initialized = False
return # Cannot proceed without embedder
# 2. Initialize SQLite if used
if STORAGE_BACKEND == "SQLITE":
_init_sqlite_tables()
# 3. Load Memories
logger.info("Loading memories...")
temp_memories_json = []
if STORAGE_BACKEND == "RAM":
_memory_items_list = [] # Start fresh for RAM backend
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) # Add download_mode if needed
if "train" in dataset and "memory_json" in dataset["train"].column_names: # Assuming 'memory_json' column
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
_memory_items_list = temp_memories_json
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
# 4. Build/Load FAISS Memory Index
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
if _memory_items_list:
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
# Extract text to embed from memory JSON objects
texts_to_embed_mem = []
for mem_json_str in _memory_items_list:
try:
mem_obj = json.loads(mem_json_str)
# Consistent embedding strategy: user input + bot response + takeaway
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
texts_to_embed_mem.append(text)
except json.JSONDecodeError:
logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
if texts_to_embed_mem:
try:
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False) # convert_to_numpy=True
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
_faiss_memory_index.add(embeddings_np)
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
# 5. Load Rules
logger.info("Loading rules...")
temp_rules_text = []
if STORAGE_BACKEND == "RAM":
_rules_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
_rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
# 6. Build/Load FAISS Rules Index
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
if _rules_items_list: # Check again in case it became empty after filtering
try:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
_faiss_rules_index.add(embeddings_np)
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
# --- Memory Operations (Semantic) ---
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
"""Adds a memory entry to the configured backend and FAISS index."""
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index:
return False, "Memory system or embedder not initialized for adding memory."
memory_obj = {
"user_input": user_input,
"metrics": metrics,
"bot_response": bot_response,
"timestamp": datetime.utcnow().isoformat()
}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
return False, "Embedding shape error."
# Add to FAISS
_faiss_memory_index.add(embedding_np)
# Add to in-memory list
_memory_items_list.append(memory_json_str)
# Add to persistent storage
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
# This can be slow, consider batching or async push
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
# TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
return False, f"Error adding memory: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
"""Retrieves k most relevant memories using semantic search."""
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension:
logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
return []
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
results = []
for i in indices[0]:
if 0 <= i < len(_memory_items_list):
try:
results.append(json.loads(_memory_items_list[i]))
except json.JSONDecodeError:
logger.warning(f"Could not parse memory JSON from list at index {i}")
else:
logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
return []
# --- Rule (Insight) Operations (Semantic) ---
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
"""Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index:
return False, "Rule system or embedder not initialized."
rule_text = rule_text.strip()
if not rule_text: return False, "Rule text cannot be empty."
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
if rule_text in _rules_items_list:
return False, "duplicate"
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
return False, "Rule embedding shape error."
_faiss_rules_index.add(embedding_np)
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True, "Rule added successfully."
except Exception as e:
logger.error(f"Error adding rule entry: {e}", exc_info=True)
# Basic rollback if FAISS add succeeded
if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
# A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
# For simplicity, this is omitted here. State could be inconsistent on error.
pass
return False, f"Error adding rule: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
"""Retrieves k most relevant rules using semantic search."""
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension: return []
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
"""Removes a rule from backend and rebuilds FAISS for rules."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index: return False
rule_text_to_delete = rule_text_to_delete.strip()
if rule_text_to_delete not in _rules_items_list:
return False # Not found
try:
_rules_items_list.remove(rule_text_to_delete)
_rules_items_list.sort() # Maintain sorted order
# Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
new_faiss_rules_index.add(embeddings_np)
else: # Should not happen if list is consistent
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
# Attempt to revert _rules_items_list (add back the rule)
_rules_items_list.append(rule_text_to_delete)
_rules_items_list.sort()
return False # Indicate failure
_faiss_rules_index = new_faiss_rules_index
# Remove from persistent storage
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True
except Exception as e:
logger.error(f"Error removing rule entry: {e}", exc_info=True)
# Potential partial failure, state might be inconsistent.
return False
# --- Utility functions to get all data (for UI display, etc.) ---
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
# Convert JSON strings to dicts for easier use by UI
mem_dicts = []
for mem_json_str in _memory_items_list:
try: mem_dicts.append(json.loads(mem_json_str))
except: pass # Ignore parse errors for display
return mem_dicts
def clear_all_memory_data_backend() -> bool:
"""Clears all memories from backend and resets in-memory FAISS/list."""
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
# Deleting from HF usually means pushing an empty dataset
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
_memory_items_list = []
if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
logger.info("All memories cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all memory data: {e}")
success = False
return success
def clear_all_rules_data_backend() -> bool:
"""Clears all rules from backend and resets in-memory FAISS/list."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
_rules_items_list = []
if _faiss_rules_index: _faiss_rules_index.reset()
logger.info("All rules cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all rules data: {e}")
success = False
return success
# Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
try:
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
try:
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
def load_faiss_indices_from_disk():
global _faiss_memory_index, _faiss_rules_index
if not _initialized or not faiss: return
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
try:
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
# Consistency check: FAISS ntotal vs len(_memory_items_list)
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
try:
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")