ReVQ / app.py
AndyRaoTHU's picture
update
4359005
import gradio as gr
from io import BytesIO
import os
import sys
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import torch
from torchvision import transforms as T
from revq.models.quantizer import sinkhorn
from revq.models.preprocessor import Preprocessor
from revq.models.revq import ReVQ
from revq.models.revq_quantizer import Quantizer
from revq.utils.init import seed_everything
seed_everything(42)
from revq.models.vqgan_hf import VQModelHF
# matplotlib.rcParams['font.family'] = 'Times New Roman'
from diffusers import AutoencoderDC
#################
handler = None
device = torch.device("cpu")
#################
def load_preprocessor(device, is_eval: bool = True, ckpt_path: str = "./ckpt/preprocessor.pth"):
preprocessor = Preprocessor(
input_data_size=[32,8,8]
).to(device)
preprocessor.load_state_dict(
torch.load(ckpt_path, map_location=device, weights_only=True)
)
if is_eval:
preprocessor.eval()
return preprocessor
# ReVQ: for reset strategy
def fig_to_array(fig):
buf = BytesIO()
fig.savefig(buf, format='png') # 改为 png,不用 webp
buf.seek(0)
image = Image.open(buf)
return np.array(image)
def get_codebook(quantizer):
with torch.no_grad():
codes = quantizer.embeddings.squeeze().detach()
return codes
def draw_fig(ax, quantizer, data, color="r", title=""):
codes = get_codebook(quantizer)
ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
if color == "r":
ax.scatter(codes[:, 0], codes[:, 1], s=40, c='red', alpha=0.5)
else:
ax.scatter(codes[:, 0], codes[:, 1], s=40, c='green', alpha=0.5)
ax.set_xlim(-5, 10)
ax.set_ylim(-10, 5)
ax.tick_params(axis='x', labelsize=22)
ax.tick_params(axis='y', labelsize=22)
ax.set_xticks(np.arange(-5, 11, 5))
ax.set_yticks(np.arange(-10, 6, 5))
ax.grid(linestyle='--', color='#333333', alpha=0.7)
ax.set_title(f"{title}", fontsize=24)
def draw_arrow(ax, start, end):
for i in range(len(start)):
ax.arrow(start[i][0], start[i][1], end[i][0] - start[i][0], end[i][1] - start[i][1],
head_width=0.1, head_length=0.1, fc='orange', ec='orange', alpha=0.8,
ls="-", lw=1)
def draw_reset_result(num_data=16, num_code=12):
fig_reset, ax_reset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
fig_nreset, ax_nreset = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
x = torch.randn(num_data, 1) * 2 + 5
y = torch.randn(num_data, 1) * 2 - 5
data = torch.cat([x, y], dim=1)
quantizer = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1)
optimizer = torch.optim.SGD(quantizer.parameters(), lr=0.1)
quantizer_nreset = Quantizer(TYPE='vq', code_dim=2, num_code=num_code, num_group=1, tokens_per_data=1, auto_reset=False)
optimizer_nreset = torch.optim.SGD(quantizer_nreset.parameters(), lr=0.1)
draw_fig(ax_reset[0], quantizer, data, color='g', title=f"Initialization")
draw_fig(ax_nreset[0], quantizer_nreset, data, color='r', title=f"Initialization")
ax_reset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
ax_nreset[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
i_list = [1, 3, 10, 50, 200]
count = 0
for i in range(500):
optimizer.zero_grad()
optimizer_nreset.zero_grad()
output_dict = quantizer(data.unsqueeze(1))
output_dict_nreset = quantizer_nreset(data.unsqueeze(1))
quant_data = output_dict["x_quant"].squeeze()
quant_data_nreset = output_dict_nreset["x_quant"].squeeze()
indices = output_dict["indices"].squeeze()
indices = output_dict_nreset["indices"].squeeze()
loss = torch.mean((quant_data - data) ** 2)
loss_nreset = torch.mean((quant_data_nreset - data) ** 2)
loss.backward()
loss_nreset.backward()
optimizer.step()
optimizer_nreset.step()
if (i+1) in i_list:
count += 1
draw_fig(ax_reset[count], quantizer, data, color='g', title=f"Iters: {i+1}, MSE: {loss.item():.1f}")
draw_arrow(ax_reset[count], quant_data.detach().numpy(), data.numpy())
draw_fig(ax_nreset[count], quantizer_nreset, data, color='r', title=f"Iters: {i+1}, MSE: {loss_nreset.item():.1f}")
draw_arrow(ax_nreset[count], quant_data_nreset.detach().numpy(), data.numpy())
quantizer.reset()
fig_reset.suptitle("VQ Codebook Training with Reset", fontsize=24, y=1.05)
fig_nreset.suptitle("VQ Codebook Training without Reset", fontsize=24, y=1.05)
img_reset = fig_to_array(fig_reset)
img_nreset = fig_to_array(fig_nreset)
return img_nreset, img_reset
# end
# ReVQ: for multi-group
def get_codebook_v2(quantizer):
with torch.no_grad():
embedding = quantizer.embeddings
if quantizer.num_group == 1:
group1 = embedding[0].squeeze()
group2 = embedding[0].squeeze()
else:
group1 = embedding[0].squeeze()
group2 = embedding[1].squeeze()
codes = torch.cartesian_prod(group1, group2)
return codes
def draw_fig_v2(ax, quantizer, data, color='r', title=""):
codes = get_codebook_v2(quantizer)
ax.scatter(data[:, 0], data[:, 1], s=60, marker="*")
if color == "r":
ax.scatter(codes[:, 0], codes[:, 1], s=20, c='red', alpha=0.5)
else:
ax.scatter(codes[:, 0], codes[:, 1], s=20, c='green', alpha=0.5)
ax.plot([-12, 12], [-12, 12], color='orange', linestyle='--', linewidth=2)
ax.set_xlim(-12, 12)
ax.set_ylim(-12, 12)
ax.tick_params(axis='x', labelsize=22)
ax.tick_params(axis='y', labelsize=22)
ax.set_xticks(np.arange(-10, 11, 5))
ax.set_yticks(np.arange(-10, 11, 5))
ax.grid(linestyle='--', color='#333333', alpha=0.7)
ax.set_title(f"{title}", fontsize=26)
def draw_multi_group_result(num_data=16, num_code=12):
fig_s, ax_s = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
fig_m, ax_m = plt.subplots(1, 6, figsize=(36, 6), dpi=400)
x = torch.randn(num_data, 1) * 3 + 4
y = torch.randn(num_data, 1) * 3 - 4
data = torch.cat([x, y], dim=1)
quantizer_s = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=1, tokens_per_data=2)
optimizer_s = torch.optim.SGD(quantizer_s.parameters(), lr=0.1)
quantizer_m = Quantizer(TYPE='vq', code_dim=1, num_code=num_code, num_group=2, tokens_per_data=2)
optimizer_m = torch.optim.SGD(quantizer_m.parameters(), lr=0.1)
draw_fig_v2(ax_s[0], quantizer_s, data, color='r', title=f"Initialization")
draw_fig_v2(ax_m[0], quantizer_m, data, color='g', title=f"Initialization")
ax_s[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
ax_m[0].legend(["Data", "Code"], loc="upper right", fontsize=24)
i_list = [5, 20, 50, 200, 1000]
count = 0
for i in range(1500):
optimizer_s.zero_grad()
optimizer_m.zero_grad()
quant_data_s = quantizer_s(data.unsqueeze(-1))["x_quant"].squeeze()
quant_data_m = quantizer_m(data.unsqueeze(-1))["x_quant"].squeeze()
loss_s = torch.mean((quant_data_s - data) ** 2)
loss_m = torch.mean((quant_data_m - data) ** 2)
loss_s.backward()
loss_m.backward()
optimizer_s.step()
optimizer_m.step()
if (i+1) in i_list:
count += 1
draw_fig_v2(ax_s[count], quantizer_s, data, color='r', title=f"Iters: {i+1}, MSE: {loss_s.item():.1f}")
draw_fig_v2(ax_m[count], quantizer_m, data, color='g', title=f"Iters: {i+1}, MSE: {loss_m.item():.1f}")
quantizer_s.reset()
quantizer_m.reset()
fig_s.suptitle("VQ Codebook Training with Single Group", fontsize=24, y=1.05)
fig_m.suptitle("VQ Codebook Training with Multi Group", fontsize=24, y=1.05)
img_s = fig_to_array(fig_s)
img_m = fig_to_array(fig_m)
return img_s, img_m
# end
# ReVQ: for image reconstruction
class Handler:
def __init__(self, device):
self.transform = T.Compose([
T.Resize(256),
T.CenterCrop(256),
T.ToTensor()
])
self.device = device
self.basevq = VQModelHF.from_pretrained("BorelTHU/basevq-16x16x4")
self.basevq.to(self.device)
self.basevq.eval()
self.vqgan = VQModelHF.from_pretrained("BorelTHU/vqgan-16x16")
self.vqgan.to(self.device)
self.vqgan.eval()
self.optvq = VQModelHF.from_pretrained("BorelTHU/optvq-16x16x4")
self.optvq.to(self.device)
self.optvq.eval()
self.vae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers")
self.vae.to(self.device)
self.vae.eval()
self.preprocesser = load_preprocessor(self.device)
self.revq = ReVQ.from_pretrained("AndyRaoTHU/revq-512T")
self.revq.to(self.device)
self.revq.eval()
# print("Models loaded successfully!")
def tensor_to_image(self, tensor):
img = tensor.squeeze(0).cpu().permute(1, 2, 0).numpy()
img = (img + 1) / 2 * 255
img = img.astype("uint8")
return img
def process_image(self, img: np.ndarray):
img = Image.fromarray(img.astype("uint8"))
img = self.transform(img)
img = img.unsqueeze(0).to(self.device)
with torch.no_grad():
img = 2 * img - 1
# basevq
quant, *_ = self.basevq.encode(img)
basevq_rec = self.basevq.decode(quant)
# vqgan
quant, *_ = self.vqgan.encode(img)
vqgan_rec = self.vqgan.decode(quant)
# revq
lat = self.vae.encode(img).latent
lat = lat.contiguous()
lat = self.preprocesser(lat)
lat = self.revq.quantize(lat)
revq_rec = self.revq.decode(lat)
revq_rec = revq_rec.contiguous()
revq_rec = self.preprocesser.inverse(revq_rec)
revq_rec = self.vae.decode(revq_rec).sample
# tensor to PIL image
img = self.tensor_to_image(img)
basevq_rec = self.tensor_to_image(basevq_rec)
vqgan_rec = self.tensor_to_image(vqgan_rec)
revq_rec = self.tensor_to_image(revq_rec)
return basevq_rec, vqgan_rec, revq_rec
if __name__ == "__main__":
# create the model handler
handler = Handler(device=device)
print("Creating Gradio interface...")
# Demo 1 接口:图像重建
demo1 = gr.Interface(
fn=handler.process_image,
inputs=gr.Image(label="Input Image", type="numpy"),
outputs=[
gr.Image(label="BaseVQ Reconstruction", type="numpy"),
gr.Image(label="VQGAN Reconstruction", type="numpy"),
gr.Image(label="ReVQ Reconstruction", type="numpy"),
],
title="Demo 1: Image Reconstruction",
description="Upload an image to see how different VQ models (BaseVQ, VQGAN, ReVQ) reconstruct it from latent codes."
)
with gr.Blocks() as demo2:
gr.Markdown("## Demo 2: Codebook Reset Strategy Visualization")
gr.Markdown("Visualizes codebook and data movement at different training steps with or without codebook reset strategy.")
with gr.Row():
num_data = gr.Slider(label="num_data", value=16, minimum=10, maximum=20, step=1)
num_code = gr.Slider(label="num_code", value=12, minimum=8, maximum=16, step=1)
submit_btn = gr.Button("Run Visualization")
with gr.Column(): # 垂直输出
out_without_reset = gr.Image(label="Without Reset")
out_with_reset = gr.Image(label="With Reset")
submit_btn.click(fn=draw_reset_result, inputs=[num_data, num_code], outputs=[out_without_reset, out_with_reset])
with gr.Blocks() as demo3:
gr.Markdown("## Demo 3: Channel Multi-Group Strategy Visualization")
gr.Markdown("Visualizes codebook and data movement at different training steps with or without multi-group strategy.")
with gr.Row():
num_data = gr.Slider(label="num_data", value=32, minimum=28, maximum=40, step=1)
num_code = gr.Slider(label="num_code", value=8, minimum=6, maximum=10, step=1)
submit_btn = gr.Button("Run Visualization")
with gr.Column(): # 垂直输出
out_s = gr.Image(label="Single Group")
out_m = gr.Image(label="Multi Group")
submit_btn.click(fn=draw_multi_group_result, inputs=[num_data, num_code], outputs=[out_s, out_m])
demo = gr.TabbedInterface(
interface_list=[demo1, demo2, demo3],
tab_names=["Image Reconstruction", "Reset Strategy", "Channel Multi-Group Strategy"]
)
demo.launch(share=True)