File size: 64,518 Bytes
d1eb779
631a418
 
f45845d
 
631a418
97fec7a
631a418
f45845d
 
9b58814
631a418
f45845d
 
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
f45845d
 
 
d1eb779
631a418
d1eb779
 
195647b
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45845d
 
 
 
fd48c2d
f45845d
 
 
 
 
 
 
 
 
 
 
626f8a0
f45845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626f8a0
 
f45845d
 
 
 
 
 
 
 
626f8a0
 
f45845d
 
 
 
 
 
 
 
626f8a0
 
f45845d
 
 
 
 
 
631a418
3640286
 
 
 
 
 
 
 
 
631a418
3640286
631a418
3640286
 
 
631a418
3640286
631a418
3640286
 
 
 
 
 
 
 
 
631a418
3640286
631a418
 
 
f45845d
 
 
 
 
 
 
 
 
 
 
 
 
9b58814
f45845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b58814
f45845d
631a418
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45845d
 
 
 
 
 
631a418
f45845d
 
 
626f8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45845d
 
9b58814
 
 
 
f45845d
9b58814
631a418
f45845d
 
 
 
 
 
 
 
 
9b58814
f45845d
9b58814
626f8a0
9b58814
f45845d
 
 
 
 
 
631a418
9b58814
 
 
 
 
 
 
 
f45845d
9b58814
f45845d
195647b
 
 
fd48c2d
 
626f8a0
9b58814
626f8a0
9b58814
 
 
626f8a0
9b58814
626f8a0
 
9b58814
626f8a0
 
 
f57d15a
 
 
9b58814
 
 
195647b
 
 
 
 
 
 
 
 
f57d15a
 
 
 
 
 
 
195647b
f57d15a
195647b
f57d15a
195647b
f57d15a
195647b
 
 
 
 
 
f57d15a
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d15a
195647b
f57d15a
195647b
 
 
 
 
 
 
f57d15a
195647b
 
f57d15a
195647b
 
 
 
 
f57d15a
195647b
 
 
 
 
 
f57d15a
195647b
 
 
 
 
 
f57d15a
195647b
 
 
 
 
f57d15a
195647b
 
f57d15a
 
 
 
 
195647b
 
 
f57d15a
195647b
f57d15a
 
 
195647b
 
 
 
f57d15a
195647b
 
 
 
 
 
f57d15a
195647b
 
 
 
 
 
f57d15a
195647b
 
 
 
 
f57d15a
 
195647b
 
 
 
 
 
 
 
 
f57d15a
195647b
 
 
 
 
f57d15a
195647b
f57d15a
626f8a0
 
 
 
 
 
 
fd48c2d
 
 
 
f57d15a
9b58814
 
fd48c2d
f57d15a
 
fd48c2d
f57d15a
fd48c2d
f57d15a
195647b
 
 
 
 
 
 
 
 
9b58814
f57d15a
195647b
 
 
 
 
f57d15a
195647b
f57d15a
 
fd48c2d
 
 
 
 
 
 
f57d15a
626f8a0
 
 
 
9b58814
626f8a0
fd48c2d
 
 
 
 
 
 
f57d15a
 
fd48c2d
626f8a0
 
 
 
631a418
195647b
 
 
f45845d
 
 
fd48c2d
631a418
f45845d
 
 
 
 
 
 
 
 
 
9b58814
 
 
f45845d
9b58814
f45845d
 
 
 
 
 
 
626f8a0
 
 
195647b
 
 
9b58814
 
 
 
 
 
fd48c2d
 
 
f45845d
 
631a418
fd48c2d
 
 
 
631a418
f45845d
195647b
631a418
 
f45845d
631a418
 
f45845d
 
 
fd48c2d
631a418
9b58814
f45845d
 
97fec7a
195647b
fd48c2d
195647b
 
fd48c2d
f45845d
 
fd48c2d
195647b
 
 
 
 
 
 
fd48c2d
f57d15a
 
 
 
 
 
 
 
 
fd48c2d
9b58814
 
626f8a0
195647b
 
 
 
 
626f8a0
f45845d
195647b
 
 
 
fd48c2d
195647b
fd48c2d
195647b
 
fd48c2d
 
9b58814
fd48c2d
195647b
626f8a0
195647b
 
 
 
 
 
fd48c2d
195647b
 
 
fd48c2d
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd48c2d
195647b
f57d15a
195647b
 
fd48c2d
195647b
 
 
 
fd48c2d
195647b
fd48c2d
 
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45845d
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d15a
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d15a
195647b
 
 
f57d15a
195647b
f57d15a
195647b
 
 
f57d15a
195647b
f57d15a
195647b
 
 
 
 
f57d15a
195647b
f57d15a
195647b
 
 
 
 
 
 
f57d15a
195647b
 
 
 
 
f57d15a
195647b
 
 
 
 
 
 
 
 
 
 
 
 
f57d15a
 
 
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631a418
195647b
f45845d
195647b
fd48c2d
631a418
195647b
f57d15a
195647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d15a
 
9b58814
195647b
f45845d
f57d15a
 
 
195647b
 
 
 
 
f57d15a
195647b
 
626f8a0
195647b
631a418
 
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626f8a0
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baae
 
 
 
 
 
 
 
195647b
c27baae
 
 
 
 
 
 
9b58814
195647b
9b58814
 
 
 
 
195647b
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631a418
 
 
f45845d
9b58814
f45845d
626f8a0
f45845d
631a418
 
4b06f5e
 
f45845d
9b58814
 
4b06f5e
 
fd48c2d
9b58814
 
 
 
 
 
fd48c2d
 
195647b
 
 
 
 
 
 
 
 
631a418
9b58814
631a418
 
 
 
9b58814
f45845d
9b58814
 
 
 
 
f45845d
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
631a418
 
 
 
9b58814
f45845d
 
 
9b58814
f45845d
fd48c2d
 
631a418
 
9b58814
 
 
 
 
 
fd48c2d
9b58814
fd48c2d
195647b
 
 
 
 
 
 
 
 
 
 
 
 
fd48c2d
 
c27baae
 
f45845d
195647b
 
f45845d
195647b
9b58814
f45845d
631a418
195647b
9b58814
 
 
 
 
195647b
 
 
9b58814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631a418
9b58814
195647b
f45845d
631a418
 
9b58814
 
 
 
 
 
 
 
 
 
 
631a418
 
 
d1eb779
9b58814
f45845d
97fec7a
9b58814
f45845d
9b58814
f45845d
 
9b58814
f45845d
 
 
 
 
 
 
 
631a418
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
import gradio as gr
import anthropic
import PyPDF2
import pandas as pd
import numpy as np
import io
import os
import json
import zipfile
import tempfile
from typing import Dict, List, Tuple, Union, Optional
import re
from pathlib import Path
import openpyxl
from dataclasses import dataclass
from enum import Enum
from docx import Document
from docx.shared import Inches, Pt, RGBColor
from docx.enum.text import WD_ALIGN_PARAGRAPH
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
import matplotlib.pyplot as plt
from datetime import datetime

# Configuración para HuggingFace
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'

# Inicializar cliente Anthropic
client = anthropic.Anthropic()

# Sistema de traducción - Actualizado con nuevas entradas
TRANSLATIONS = {
    'en': {
        'title': '🧬 Comparative Analyzer of Biotechnological Models',
        'subtitle': 'Specialized in comparative analysis of mathematical model fitting results',
        'upload_files': '📁 Upload fitting results (CSV/Excel)',
        'select_model': '🤖 Claude Model',
        'select_language': '🌐 Language',
        'select_theme': '🎨 Theme',
        'detail_level': '📋 Analysis detail level',
        'detailed': 'Detailed',
        'summarized': 'Summarized',
        'analyze_button': '🚀 Analyze and Compare Models',
        'export_format': '📄 Export format',
        'export_button': '💾 Export Report',
        'comparative_analysis': '📊 Comparative Analysis',
        'implementation_code': '💻 Implementation Code',
        'data_format': '📋 Expected data format',
        'examples': '📚 Analysis examples',
        'light': 'Light',
        'dark': 'Dark',
        'best_for': 'Best for',
        'loading': 'Loading...',
        'error_no_api': 'Please configure ANTHROPIC_API_KEY in HuggingFace Space secrets',
        'error_no_files': 'Please upload fitting result files to analyze',
        'report_exported': 'Report exported successfully as',
        'specialized_in': '🎯 Specialized in:',
        'metrics_analyzed': '📊 Analyzed metrics:',
        'what_analyzes': '🔍 What it specifically analyzes:',
        'tips': '💡 Tips for better results:',
        'additional_specs': '📝 Additional specifications for analysis',
        'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
    },
    'es': {
        'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
        'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos',
        'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
        'select_model': '🤖 Modelo Claude',
        'select_language': '🌐 Idioma',
        'select_theme': '🎨 Tema',
        'detail_level': '📋 Nivel de detalle del análisis',
        'detailed': 'Detallado',
        'summarized': 'Resumido',
        'analyze_button': '🚀 Analizar y Comparar Modelos',
        'export_format': '📄 Formato de exportación',
        'export_button': '💾 Exportar Reporte',
        'comparative_analysis': '📊 Análisis Comparativo',
        'implementation_code': '💻 Código de Implementación',
        'data_format': '📋 Formato de datos esperado',
        'examples': '📚 Ejemplos de análisis',
        'light': 'Claro',
        'dark': 'Oscuro',
        'best_for': 'Mejor para',
        'loading': 'Cargando...',
        'error_no_api': 'Por favor configura ANTHROPIC_API_KEY en los secretos del Space',
        'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
        'report_exported': 'Reporte exportado exitosamente como',
        'specialized_in': '🎯 Especializado en:',
        'metrics_analyzed': '📊 Métricas analizadas:',
        'what_analyzes': '🔍 Qué analiza específicamente:',
        'tips': '💡 Tips para mejores resultados:',
        'additional_specs': '📝 Especificaciones adicionales para el análisis',
        'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
    },
    'fr': {
        'title': '🧬 Analyseur Comparatif de Modèles Biotechnologiques',
        'subtitle': 'Spécialisé dans l\'analyse comparative des résultats d\'ajustement',
        'upload_files': '📁 Télécharger les résultats (CSV/Excel)',
        'select_model': '🤖 Modèle Claude',
        'select_language': '🌐 Langue',
        'select_theme': '🎨 Thème',
        'detail_level': '📋 Niveau de détail',
        'detailed': 'Détaillé',
        'summarized': 'Résumé',
        'analyze_button': '🚀 Analyser et Comparer',
        'export_format': '📄 Format d\'export',
        'export_button': '💾 Exporter le Rapport',
        'comparative_analysis': '📊 Analyse Comparative',
        'implementation_code': '💻 Code d\'Implémentation',
        'data_format': '📋 Format de données attendu',
        'examples': '📚 Exemples d\'analyse',
        'light': 'Clair',
        'dark': 'Sombre',
        'best_for': 'Meilleur pour',
        'loading': 'Chargement...',
        'error_no_api': 'Veuillez configurer ANTHROPIC_API_KEY',
        'error_no_files': 'Veuillez télécharger des fichiers à analyser',
        'report_exported': 'Rapport exporté avec succès comme',
        'specialized_in': '🎯 Spécialisé dans:',
        'metrics_analyzed': '📊 Métriques analysées:',
        'what_analyzes': '🔍 Ce qu\'il analyse spécifiquement:',
        'tips': '💡 Conseils pour de meilleurs résultats:',
        'additional_specs': '📝 Spécifications supplémentaires pour l\'analyse',
        'additional_specs_placeholder': 'Ajoutez des exigences spécifiques ou des domaines d\'intérêt pour l\'analyse...'
    },
    'de': {
        'title': '🧬 Vergleichender Analysator für Biotechnologische Modelle',
        'subtitle': 'Spezialisiert auf vergleichende Analyse von Modellanpassungsergebnissen',
        'upload_files': '📁 Ergebnisse hochladen (CSV/Excel)',
        'select_model': '🤖 Claude Modell',
        'select_language': '🌐 Sprache',
        'select_theme': '🎨 Thema',
        'detail_level': '📋 Detailgrad der Analyse',
        'detailed': 'Detailliert',
        'summarized': 'Zusammengefasst',
        'analyze_button': '🚀 Analysieren und Vergleichen',
        'export_format': '📄 Exportformat',
        'export_button': '💾 Bericht Exportieren',
        'comparative_analysis': '📊 Vergleichende Analyse',
        'implementation_code': '💻 Implementierungscode',
        'data_format': '📋 Erwartetes Datenformat',
        'examples': '📚 Analysebeispiele',
        'light': 'Hell',
        'dark': 'Dunkel',
        'best_for': 'Am besten für',
        'loading': 'Laden...',
        'error_no_api': 'Bitte konfigurieren Sie ANTHROPIC_API_KEY',
        'error_no_files': 'Bitte laden Sie Dateien zur Analyse hoch',
        'report_exported': 'Bericht erfolgreich exportiert als',
        'specialized_in': '🎯 Spezialisiert auf:',
        'metrics_analyzed': '📊 Analysierte Metriken:',
        'what_analyzes': '🔍 Was spezifisch analysiert wird:',
        'tips': '💡 Tipps für bessere Ergebnisse:',
        'additional_specs': '📝 Zusätzliche Spezifikationen für die Analyse',
        'additional_specs_placeholder': 'Fügen Sie spezifische Anforderungen oder Schwerpunktbereiche für die Analyse hinzu...'
    },
    'pt': {
        'title': '🧬 Analisador Comparativo de Modelos Biotecnológicos',
        'subtitle': 'Especializado em análise comparativa de resultados de ajuste',
        'upload_files': '📁 Carregar resultados (CSV/Excel)',
        'select_model': '🤖 Modelo Claude',
        'select_language': '🌐 Idioma',
        'select_theme': '🎨 Tema',
        'detail_level': '📋 Nível de detalhe',
        'detailed': 'Detalhado',
        'summarized': 'Resumido',
        'analyze_button': '🚀 Analisar e Comparar',
        'export_format': '📄 Formato de exportação',
        'export_button': '💾 Exportar Relatório',
        'comparative_analysis': '📊 Análise Comparativa',
        'implementation_code': '💻 Código de Implementação',
        'data_format': '📋 Formato de dados esperado',
        'examples': '📚 Exemplos de análise',
        'light': 'Claro',
        'dark': 'Escuro',
        'best_for': 'Melhor para',
        'loading': 'Carregando...',
        'error_no_api': 'Por favor configure ANTHROPIC_API_KEY',
        'error_no_files': 'Por favor carregue arquivos para analisar',
        'report_exported': 'Relatório exportado com sucesso como',
        'specialized_in': '🎯 Especializado em:',
        'metrics_analyzed': '📊 Métricas analisadas:',
        'what_analyzes': '🔍 O que analisa especificamente:',
        'tips': '💡 Dicas para melhores resultados:',
        'additional_specs': '📝 Especificações adicionais para a análise',
        'additional_specs_placeholder': 'Adicione requisitos específicos ou áreas de foco para a análise...'
    }
}

# Temas disponibles
THEMES = {
    'light': gr.themes.Soft(),
    'dark': gr.themes.Base(
        primary_hue="blue",
        secondary_hue="gray",
        neutral_hue="gray",
        font=["Arial", "sans-serif"]
    ).set(
        body_background_fill="dark",
        body_background_fill_dark="*neutral_950",
        button_primary_background_fill="*primary_600",
        button_primary_background_fill_hover="*primary_500",
        button_primary_text_color="white",
        block_background_fill="*neutral_800",
        block_border_color="*neutral_700",
        block_label_text_color="*neutral_200",
        block_title_text_color="*neutral_100",
        checkbox_background_color="*neutral_700",
        checkbox_background_color_selected="*primary_600",
        input_background_fill="*neutral_700",
        input_border_color="*neutral_600",
        input_placeholder_color="*neutral_400"
    )
}

# Enum para tipos de análisis
class AnalysisType(Enum):
    MATHEMATICAL_MODEL = "mathematical_model"
    DATA_FITTING = "data_fitting"
    FITTING_RESULTS = "fitting_results"
    UNKNOWN = "unknown"

# Estructura modular para modelos
@dataclass
class MathematicalModel:
    name: str
    equation: str
    parameters: List[str]
    application: str
    sources: List[str]
    category: str
    biological_meaning: str

# Sistema de registro de modelos escalable
class ModelRegistry:
    def __init__(self):
        self.models = {}
        self._initialize_default_models()
    
    def register_model(self, model: MathematicalModel):
        """Registra un nuevo modelo matemático"""
        if model.category not in self.models:
            self.models[model.category] = {}
        self.models[model.category][model.name] = model
    
    def get_model(self, category: str, name: str) -> MathematicalModel:
        """Obtiene un modelo específico"""
        return self.models.get(category, {}).get(name)
    
    def get_all_models(self) -> Dict:
        """Retorna todos los modelos registrados"""
        return self.models
    
    def _initialize_default_models(self):
        """Inicializa los modelos por defecto"""
        # Modelos de crecimiento
        self.register_model(MathematicalModel(
            name="Monod",
            equation="μ = μmax × (S / (Ks + S))",
            parameters=["μmax (h⁻¹)", "Ks (g/L)"],
            application="Crecimiento limitado por sustrato único",
            sources=["Cambridge", "MIT", "DTU"],
            category="crecimiento_biomasa",
            biological_meaning="Describe cómo la velocidad de crecimiento depende de la concentración de sustrato limitante"
        ))
        
        self.register_model(MathematicalModel(
            name="Logístico",
            equation="dX/dt = μmax × X × (1 - X/Xmax)",
            parameters=["μmax (h⁻¹)", "Xmax (g/L)"],
            application="Sistemas cerrados batch",
            sources=["Cranfield", "Swansea", "HAL Theses"],
            category="crecimiento_biomasa",
            biological_meaning="Modela crecimiento limitado por capacidad de carga del sistema"
        ))
        
        self.register_model(MathematicalModel(
            name="Gompertz",
            equation="X(t) = Xmax × exp(-exp((μmax × e / Xmax) × (λ - t) + 1))",
            parameters=["λ (h)", "μmax (h⁻¹)", "Xmax (g/L)"],
            application="Crecimiento con fase lag pronunciada",
            sources=["Lund University", "NC State"],
            category="crecimiento_biomasa",
            biological_meaning="Incluye fase de adaptación (lag) seguida de crecimiento exponencial y estacionario"
        ))

# Instancia global del registro
model_registry = ModelRegistry()

# Modelos de Claude disponibles
CLAUDE_MODELS = {
    "claude-opus-4-20250514": {
        "name": "Claude Opus 4 (Latest)",
        "description": "Modelo más potente para desafíos complejos",
        "max_tokens": 4000,
        "best_for": "Análisis muy detallados y complejos"
    },
    "claude-sonnet-4-20250514": {
        "name": "Claude Sonnet 4 (Latest)",
        "description": "Modelo inteligente y eficiente para uso cotidiano",
        "max_tokens": 4000,
        "best_for": "Análisis general, recomendado para la mayoría de casos"
    },
    "claude-3-5-haiku-20241022": {
        "name": "Claude 3.5 Haiku (Latest)",
        "description": "Modelo más rápido para tareas diarias",
        "max_tokens": 4000,
        "best_for": "Análisis rápidos y económicos"
    },
    "claude-3-7-sonnet-20250219": {
        "name": "Claude 3.7 Sonnet",
        "description": "Modelo avanzado de la serie 3.7",
        "max_tokens": 4000,
        "best_for": "Análisis equilibrados con alta calidad"
    },
    "claude-3-5-sonnet-20241022": {
        "name": "Claude 3.5 Sonnet (Oct 2024)",
        "description": "Excelente balance entre velocidad y capacidad",
        "max_tokens": 4000,
        "best_for": "Análisis rápidos y precisos"
    }
}

class FileProcessor:
    """Clase para procesar diferentes tipos de archivos"""
    
    @staticmethod
    def extract_text_from_pdf(pdf_file) -> str:
        """Extrae texto de un archivo PDF"""
        try:
            pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
            text = ""
            for page in pdf_reader.pages:
                text += page.extract_text() + "\n"
            return text
        except Exception as e:
            return f"Error reading PDF: {str(e)}"
    
    @staticmethod
    def read_csv(csv_file) -> pd.DataFrame:
        """Lee archivo CSV"""
        try:
            return pd.read_csv(io.BytesIO(csv_file))
        except Exception as e:
            return None
    
    @staticmethod
    def read_excel(excel_file) -> pd.DataFrame:
        """Lee archivo Excel"""
        try:
            return pd.read_excel(io.BytesIO(excel_file))
        except Exception as e:
            return None
    
    @staticmethod
    def extract_from_zip(zip_file) -> List[Tuple[str, bytes]]:
        """Extrae archivos de un ZIP"""
        files = []
        try:
            with zipfile.ZipFile(io.BytesIO(zip_file), 'r') as zip_ref:
                for file_name in zip_ref.namelist():
                    if not file_name.startswith('__MACOSX'):
                        file_data = zip_ref.read(file_name)
                        files.append((file_name, file_data))
        except Exception as e:
            print(f"Error processing ZIP: {e}")
        return files

class ReportExporter:
    """Clase para exportar reportes a diferentes formatos"""
    
    @staticmethod
    def export_to_docx(content: str, filename: str, language: str = 'en') -> str:
        """Exporta el contenido a un archivo DOCX"""
        doc = Document()
        
        # Configurar estilos
        title_style = doc.styles['Title']
        title_style.font.size = Pt(24)
        title_style.font.bold = True
        
        heading_style = doc.styles['Heading 1']
        heading_style.font.size = Pt(18)
        heading_style.font.bold = True
        
        # Título
        title_text = {
            'en': 'Comparative Analysis Report - Biotechnological Models',
            'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
            'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
            'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
            'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
        }
        
        doc.add_heading(title_text.get(language, title_text['en']), 0)
        
        # Fecha
        date_text = {
            'en': 'Generated on',
            'es': 'Generado el',
            'fr': 'Généré le',
            'de': 'Erstellt am',
            'pt': 'Gerado em'
        }
        doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        doc.add_paragraph()
        
        # Procesar contenido
        lines = content.split('\n')
        current_paragraph = None
        
        for line in lines:
            line = line.strip()
            
            if line.startswith('###'):
                doc.add_heading(line.replace('###', '').strip(), level=2)
            elif line.startswith('##'):
                doc.add_heading(line.replace('##', '').strip(), level=1)
            elif line.startswith('#'):
                doc.add_heading(line.replace('#', '').strip(), level=0)
            elif line.startswith('**') and line.endswith('**'):
                # Texto en negrita
                p = doc.add_paragraph()
                run = p.add_run(line.replace('**', ''))
                run.bold = True
            elif line.startswith('- ') or line.startswith('* '):
                # Lista
                doc.add_paragraph(line[2:], style='List Bullet')
            elif line.startswith(tuple('0123456789')):
                # Lista numerada
                doc.add_paragraph(line, style='List Number')
            elif line == '---' or line.startswith('==='):
                # Separador
                doc.add_paragraph('_' * 50)
            elif line:
                # Párrafo normal
                doc.add_paragraph(line)
        
        # Guardar documento
        doc.save(filename)
        return filename
    
    @staticmethod
    def export_to_pdf(content: str, filename: str, language: str = 'en') -> str:
        """Exporta el contenido a un archivo PDF"""
        # Crear documento PDF
        doc = SimpleDocTemplate(filename, pagesize=letter)
        story = []
        styles = getSampleStyleSheet()
        
        # Estilos personalizados
        title_style = ParagraphStyle(
            'CustomTitle',
            parent=styles['Title'],
            fontSize=24,
            textColor=colors.HexColor('#1f4788'),
            spaceAfter=30
        )
        
        heading_style = ParagraphStyle(
            'CustomHeading',
            parent=styles['Heading1'],
            fontSize=16,
            textColor=colors.HexColor('#2e5090'),
            spaceAfter=12
        )
        
        # Título
        title_text = {
            'en': 'Comparative Analysis Report - Biotechnological Models',
            'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
            'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
            'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
            'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
        }
        
        story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
        
        # Fecha
        date_text = {
            'en': 'Generated on',
            'es': 'Generado el',
            'fr': 'Généré le',
            'de': 'Erstellt am',
            'pt': 'Gerado em'
        }
        story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
        story.append(Spacer(1, 0.5*inch))
        
        # Procesar contenido
        lines = content.split('\n')
        
        for line in lines:
            line = line.strip()
            
            if not line:
                story.append(Spacer(1, 0.2*inch))
            elif line.startswith('###'):
                story.append(Paragraph(line.replace('###', '').strip(), styles['Heading3']))
            elif line.startswith('##'):
                story.append(Paragraph(line.replace('##', '').strip(), styles['Heading2']))
            elif line.startswith('#'):
                story.append(Paragraph(line.replace('#', '').strip(), heading_style))
            elif line.startswith('**') and line.endswith('**'):
                text = line.replace('**', '')
                story.append(Paragraph(f"<b>{text}</b>", styles['Normal']))
            elif line.startswith('- ') or line.startswith('* '):
                story.append(Paragraph(f"• {line[2:]}", styles['Normal']))
            elif line == '---' or line.startswith('==='):
                story.append(Spacer(1, 0.3*inch))
                story.append(Paragraph("_" * 70, styles['Normal']))
                story.append(Spacer(1, 0.3*inch))
            else:
                # Limpiar caracteres especiales para PDF
                clean_line = line.replace('📊', '[GRAPH]').replace('🎯', '[TARGET]').replace('🔍', '[SEARCH]').replace('💡', '[TIP]')
                story.append(Paragraph(clean_line, styles['Normal']))
        
        # Construir PDF
        doc.build(story)
        return filename

class AIAnalyzer:
    """Clase para análisis con IA"""
    
    def __init__(self, client, model_registry):
        self.client = client
        self.model_registry = model_registry
    
    def detect_analysis_type(self, content: Union[str, pd.DataFrame]) -> AnalysisType:
        """Detecta el tipo de análisis necesario"""
        if isinstance(content, pd.DataFrame):
            columns = [col.lower() for col in content.columns]
            
            fitting_indicators = [
                'r2', 'r_squared', 'rmse', 'mse', 'aic', 'bic', 
                'parameter', 'param', 'coefficient', 'fit',
                'model', 'equation', 'goodness', 'chi_square',
                'p_value', 'confidence', 'standard_error', 'se'
            ]
            
            has_fitting_results = any(indicator in ' '.join(columns) for indicator in fitting_indicators)
            
            if has_fitting_results:
                return AnalysisType.FITTING_RESULTS
            else:
                return AnalysisType.DATA_FITTING
        
        prompt = """
        Analyze this content and determine if it is:
        1. A scientific article describing biotechnological mathematical models
        2. Experimental data for parameter fitting  
        3. Model fitting results (with parameters, R², RMSE, etc.)
        
        Reply only with: "MODEL", "DATA" or "RESULTS"
        """
        
        try:
            response = self.client.messages.create(
                model="claude-3-haiku-20240307",
                max_tokens=10,
                messages=[{"role": "user", "content": f"{prompt}\n\n{content[:1000]}"}]
            )
            
            result = response.content[0].text.strip().upper()
            if "MODEL" in result:
                return AnalysisType.MATHEMATICAL_MODEL
            elif "RESULTS" in result:
                return AnalysisType.FITTING_RESULTS
            elif "DATA" in result:
                return AnalysisType.DATA_FITTING
            else:
                return AnalysisType.UNKNOWN
                
        except:
            return AnalysisType.UNKNOWN
    
    def get_language_prompt_prefix(self, language: str) -> str:
        """Obtiene el prefijo del prompt según el idioma"""
        prefixes = {
            'en': "Please respond in English. ",
            'es': "Por favor responde en español. ",
            'fr': "Veuillez répondre en français. ",
            'de': "Bitte antworten Sie auf Deutsch. ",
            'pt': "Por favor responda em português. "
        }
        return prefixes.get(language, prefixes['en'])
    
    def analyze_fitting_results(self, data: pd.DataFrame, claude_model: str, detail_level: str = "detailed", 
                              language: str = "en", additional_specs: str = "") -> Dict:
        """Analiza resultados de ajuste de modelos con soporte multiidioma y especificaciones adicionales"""
        
        # Preparar resumen completo de los datos
        data_summary = f"""
        FITTING RESULTS DATA:
        
        Data structure:
        - Columns: {list(data.columns)}
        - Number of models evaluated: {len(data)}
        
        Complete data:
        {data.to_string()}
        
        Descriptive statistics:
        {data.describe().to_string()}
        """
        
        # Extraer valores para usar en el código
        data_dict = data.to_dict('records')
        
        # Obtener prefijo de idioma
        lang_prefix = self.get_language_prompt_prefix(language)
        
        # Agregar especificaciones adicionales del usuario si existen
        user_specs_section = f"""
        
        USER ADDITIONAL SPECIFICATIONS:
        {additional_specs}
        
        Please ensure to address these specific requirements in your analysis.
        """ if additional_specs else ""
        
        # Prompt mejorado con instrucciones específicas para cada nivel
        if detail_level == "detailed":
            prompt = f"""
            {lang_prefix}
            
            You are an expert in biotechnology and mathematical modeling. Analyze these kinetic/biotechnological model fitting results.
            
            {user_specs_section}
            
            DETAIL LEVEL: DETAILED - Provide comprehensive analysis BY EXPERIMENT
            
            PERFORM A COMPREHENSIVE COMPARATIVE ANALYSIS PER EXPERIMENT:
            
            1. **EXPERIMENT IDENTIFICATION AND OVERVIEW**
               - List ALL experiments/conditions tested (e.g., pH levels, temperatures, time points)
               - For EACH experiment, identify:
                 * Experimental conditions
                 * Number of models tested
                 * Variables measured (biomass, substrate, product)
            
            2. **MODEL IDENTIFICATION AND CLASSIFICATION BY EXPERIMENT**
               For EACH EXPERIMENT separately:
               - Identify ALL fitted mathematical models BY NAME
               - Classify them: biomass growth, substrate consumption, product formation
               - Show the mathematical equation of each model
               - List parameter values obtained for that specific experiment
            
            3. **COMPARATIVE ANALYSIS PER EXPERIMENT**
               Create a section for EACH EXPERIMENT showing:
               
               **EXPERIMENT [Name/Condition]:**
               
               a) **BIOMASS MODELS** (if applicable):
                  - Best model: [Name] with R²=[value], RMSE=[value]
                  - Parameters: μmax=[value], Xmax=[value], etc.
                  - Ranking of all biomass models tested
                  
               b) **SUBSTRATE MODELS** (if applicable):
                  - Best model: [Name] with R²=[value], RMSE=[value]
                  - Parameters: Ks=[value], Yxs=[value], etc.
                  - Ranking of all substrate models tested
                  
               c) **PRODUCT MODELS** (if applicable):
                  - Best model: [Name] with R²=[value], RMSE=[value]
                  - Parameters: α=[value], β=[value], etc.
                  - Ranking of all product models tested
            
            4. **DETAILED COMPARATIVE TABLES**
               
               **Table 1: Summary by Experiment and Variable Type**
               | Experiment | Variable | Best Model | R² | RMSE | Key Parameters | Ranking |
               |------------|----------|------------|-------|------|----------------|---------|
               | Exp1       | Biomass  | [Name]     | [val] | [val]| μmax=X         | 1       |
               | Exp1       | Substrate| [Name]     | [val] | [val]| Ks=Y           | 1       |
               | Exp1       | Product  | [Name]     | [val] | [val]| α=Z            | 1       |
               | Exp2       | Biomass  | [Name]     | [val] | [val]| μmax=X2        | 1       |
               
               **Table 2: Complete Model Comparison Across All Experiments**
               | Model Name | Type | Exp1_R² | Exp1_RMSE | Exp2_R² | Exp2_RMSE | Avg_R² | Best_For |
            
            5. **PARAMETER ANALYSIS ACROSS EXPERIMENTS**
               - Compare how parameters change between experiments
               - Identify trends (e.g., μmax increases with temperature)
               - Calculate average parameters and variability
               - Suggest optimal conditions based on parameters
            
            6. **BIOLOGICAL INTERPRETATION BY EXPERIMENT**
               For each experiment, explain:
               - What the parameter values mean biologically
               - Whether values are realistic for the conditions
               - Key differences between experiments
               - Critical control parameters identified
            
            7. **OVERALL BEST MODELS DETERMINATION**
               - **BEST BIOMASS MODEL OVERALL**: [Name] - performs best in [X] out of [Y] experiments
               - **BEST SUBSTRATE MODEL OVERALL**: [Name] - average R²=[value]
               - **BEST PRODUCT MODEL OVERALL**: [Name] - most consistent across conditions
               
               Justify with numerical evidence from multiple experiments.
            
            8. **CONCLUSIONS AND RECOMMENDATIONS**
               - Which models are most robust across different conditions
               - Specific models to use for each experimental condition
               - Confidence intervals and prediction reliability
               - Scale-up recommendations with specific values
            
            Use Markdown format with clear structure. Include ALL numerical values from the data.
            Create clear sections for EACH EXPERIMENT.
            """
        else:  # summarized
            prompt = f"""
            {lang_prefix}
            
            You are an expert in biotechnology. Provide a CONCISE but COMPLETE analysis BY EXPERIMENT.
            
            {user_specs_section}
            
            DETAIL LEVEL: SUMMARIZED - Be concise but include all experiments and essential information
            
            PROVIDE A FOCUSED COMPARATIVE ANALYSIS:
            
            1. **EXPERIMENTS OVERVIEW**
               - Total experiments analyzed: [number]
               - Conditions tested: [list]
               - Variables measured: biomass/substrate/product
            
            2. **BEST MODELS BY EXPERIMENT - QUICK SUMMARY**
               
               📊 **EXPERIMENT 1 [Name/Condition]:**
               - Biomass: [Model] (R²=[value])
               - Substrate: [Model] (R²=[value])  
               - Product: [Model] (R²=[value])
               
               📊 **EXPERIMENT 2 [Name/Condition]:**
               - Biomass: [Model] (R²=[value])
               - Substrate: [Model] (R²=[value])
               - Product: [Model] (R²=[value])
               
               [Continue for all experiments...]
            
            3. **OVERALL WINNERS ACROSS ALL EXPERIMENTS**
               🏆 **Best Models Overall:**
               - **Biomass**: [Model] - Best in [X]/[Y] experiments
               - **Substrate**: [Model] - Average R²=[value]
               - **Product**: [Model] - Most consistent performance
            
            4. **QUICK COMPARISON TABLE**
               | Experiment | Best Biomass | Best Substrate | Best Product | Overall R² |
               |------------|--------------|----------------|--------------|------------|
               | Exp1       | [Model]      | [Model]        | [Model]      | [avg]      |
               | Exp2       | [Model]      | [Model]        | [Model]      | [avg]      |
            
            5. **KEY FINDINGS**
               - Parameter ranges across experiments: μmax=[min-max], Ks=[min-max]
               - Best conditions identified: [specific values]
               - Most robust models: [list with reasons]
            
            6. **PRACTICAL RECOMMENDATIONS**
               - For biomass prediction: Use [Model]
               - For substrate monitoring: Use [Model]
               - For product estimation: Use [Model]
               - Critical parameters: [list with values]
            
            Keep it concise but include ALL experiments and model names with their key metrics.
            """
        
        try:
            response = self.client.messages.create(
                model=claude_model,
                max_tokens=4000,
                messages=[{
                    "role": "user",
                    "content": f"{prompt}\n\n{data_summary}"
                }]
            )
            
            # Análisis adicional para generar código con valores numéricos reales
            code_prompt = f"""
            {lang_prefix}
            
            Based on the analysis and this actual data:
            {data.to_string()}
            
            Generate Python code that:
            
            1. Creates a complete analysis system with the ACTUAL NUMERICAL VALUES from the data
            2. Implements analysis BY EXPERIMENT showing:
               - Best models for each experiment
               - Comparison across experiments
               - Parameter evolution between conditions
            3. Includes visualization functions that:
               - Show results PER EXPERIMENT
               - Compare models across experiments
               - Display parameter trends
            4. Shows the best model for biomass, substrate, and product separately
            
            The code must include:
            - Data loading with experiment identification
            - Model comparison by experiment and variable type
            - Visualization showing results per experiment
            - Overall best model selection with justification
            - Functions to predict using the best models for each category
            
            Make sure to include comments indicating which model won for each variable type and why.
            
            Format: Complete, executable Python code with actual data values embedded.
            """
            
            code_response = self.client.messages.create(
                model=claude_model,
                max_tokens=3000,
                messages=[{
                    "role": "user",
                    "content": code_prompt
                }]
            )
            
            return {
                "tipo": "Comparative Analysis of Mathematical Models",
                "analisis_completo": response.content[0].text,
                "codigo_implementacion": code_response.content[0].text,
                "resumen_datos": {
                    "n_modelos": len(data),
                    "columnas": list(data.columns),
                    "metricas_disponibles": [col for col in data.columns if any(metric in col.lower() 
                                           for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
                    "mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
                    "mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
                    "datos_completos": data_dict  # Incluir todos los datos para el código
                }
            }
            
        except Exception as e:
            return {"error": str(e)}

def process_files(files, claude_model: str, detail_level: str = "detailed", 
                 language: str = "en", additional_specs: str = "") -> Tuple[str, str]:
    """Procesa múltiples archivos con soporte de idioma y especificaciones adicionales"""
    processor = FileProcessor()
    analyzer = AIAnalyzer(client, model_registry)
    results = []
    all_code = []
    
    for file in files:
        if file is None:
            continue
            
        file_name = file.name if hasattr(file, 'name') else "archivo"
        file_ext = Path(file_name).suffix.lower()
        
        with open(file.name, 'rb') as f:
            file_content = f.read()
        
        if file_ext in ['.csv', '.xlsx', '.xls']:
            if language == 'es':
                results.append(f"## 📊 Análisis de Resultados: {file_name}")
            else:
                results.append(f"## 📊 Results Analysis: {file_name}")
            
            if file_ext == '.csv':
                df = processor.read_csv(file_content)
            else:
                df = processor.read_excel(file_content)
            
            if df is not None:
                analysis_type = analyzer.detect_analysis_type(df)
                
                if analysis_type == AnalysisType.FITTING_RESULTS:
                    result = analyzer.analyze_fitting_results(
                        df, claude_model, detail_level, language, additional_specs
                    )
                    
                    if language == 'es':
                        results.append("### 🎯 ANÁLISIS COMPARATIVO DE MODELOS MATEMÁTICOS")
                    else:
                        results.append("### 🎯 COMPARATIVE ANALYSIS OF MATHEMATICAL MODELS")
                    
                    results.append(result.get("analisis_completo", ""))
                    if "codigo_implementacion" in result:
                        all_code.append(result["codigo_implementacion"])
        
        results.append("\n---\n")
    
    analysis_text = "\n".join(results)
    code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
    
    return analysis_text, code_text

def generate_implementation_code(analysis_results: str) -> str:
    """Genera código de implementación con análisis por experimento"""
    code = """
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import curve_fit, differential_evolution
from sklearn.metrics import r2_score, mean_squared_error
import seaborn as sns
from typing import Dict, List, Tuple, Optional

# Visualization configuration
plt.style.use('seaborn-v0_8-darkgrid')
sns.set_palette("husl")

class ExperimentalModelAnalyzer:
    \"\"\"
    Class for comparative analysis of biotechnological models across multiple experiments.
    Analyzes biomass, substrate and product models separately for each experimental condition.
    \"\"\"
    
    def __init__(self):
        self.results_df = None
        self.experiments = {}
        self.best_models_by_experiment = {}
        self.overall_best_models = {
            'biomass': None,
            'substrate': None,
            'product': None
        }
        
    def load_results(self, file_path: str = None, data_dict: dict = None) -> pd.DataFrame:
        \"\"\"Load fitting results from CSV/Excel file or dictionary\"\"\"
        if data_dict:
            self.results_df = pd.DataFrame(data_dict)
        elif file_path:
            if file_path.endswith('.csv'):
                self.results_df = pd.read_csv(file_path)
            else:
                self.results_df = pd.read_excel(file_path)
        
        print(f"✅ Data loaded: {len(self.results_df)} models")
        print(f"📊 Available columns: {list(self.results_df.columns)}")
        
        # Identify experiments
        if 'Experiment' in self.results_df.columns:
            self.experiments = self.results_df.groupby('Experiment').groups
            print(f"🧪 Experiments found: {list(self.experiments.keys())}")
        
        return self.results_df
    
    def analyze_by_experiment(self, 
                            experiment_col: str = 'Experiment',
                            model_col: str = 'Model',
                            type_col: str = 'Type',
                            r2_col: str = 'R2',
                            rmse_col: str = 'RMSE') -> Dict:
        \"\"\"
        Analyze models by experiment and variable type.
        Identifies best models for biomass, substrate, and product in each experiment.
        \"\"\"
        if self.results_df is None:
            raise ValueError("First load data with load_results()")
        
        results_by_exp = {}
        
        # Get unique experiments
        if experiment_col in self.results_df.columns:
            experiments = self.results_df[experiment_col].unique()
        else:
            experiments = ['All_Data']
            self.results_df[experiment_col] = 'All_Data'
        
        print("\\n" + "="*80)
        print("📊 ANALYSIS BY EXPERIMENT AND VARIABLE TYPE")
        print("="*80)
        
        for exp in experiments:
            print(f"\\n🧪 EXPERIMENT: {exp}")
            print("-"*50)
            
            exp_data = self.results_df[self.results_df[experiment_col] == exp]
            results_by_exp[exp] = {}
            
            # Analyze by variable type if available
            if type_col in exp_data.columns:
                var_types = exp_data[type_col].unique()
                
                for var_type in var_types:
                    var_data = exp_data[exp_data[type_col] == var_type]
                    
                    if not var_data.empty:
                        # Find best model for this variable type
                        best_idx = var_data[r2_col].idxmax()
                        best_model = var_data.loc[best_idx]
                        
                        results_by_exp[exp][var_type] = {
                            'best_model': best_model[model_col],
                            'r2': best_model[r2_col],
                            'rmse': best_model[rmse_col],
                            'all_models': var_data[[model_col, r2_col, rmse_col]].to_dict('records')
                        }
                        
                        print(f"\\n  📈 {var_type.upper()}:")
                        print(f"    Best Model: {best_model[model_col]}")
                        print(f"    R² = {best_model[r2_col]:.4f}")
                        print(f"    RMSE = {best_model[rmse_col]:.4f}")
                        
                        # Show all models for this variable
                        print(f"\\n    All {var_type} models tested:")
                        for _, row in var_data.iterrows():
                            print(f"      - {row[model_col]}: R²={row[r2_col]:.4f}, RMSE={row[rmse_col]:.4f}")
            else:
                # If no type column, analyze all models together
                best_idx = exp_data[r2_col].idxmax()
                best_model = exp_data.loc[best_idx]
                
                results_by_exp[exp]['all'] = {
                    'best_model': best_model[model_col],
                    'r2': best_model[r2_col],
                    'rmse': best_model[rmse_col],
                    'all_models': exp_data[[model_col, r2_col, rmse_col]].to_dict('records')
                }
        
        self.best_models_by_experiment = results_by_exp
        
        # Determine overall best models
        self._determine_overall_best_models()
        
        return results_by_exp
    
    def _determine_overall_best_models(self):
        \"\"\"Determine the best models across all experiments\"\"\"
        print("\\n" + "="*80)
        print("🏆 OVERALL BEST MODELS ACROSS ALL EXPERIMENTS")
        print("="*80)
        
        # Aggregate performance by model and type
        model_performance = {}
        
        for exp, exp_results in self.best_models_by_experiment.items():
            for var_type, var_results in exp_results.items():
                if var_type not in model_performance:
                    model_performance[var_type] = {}
                
                for model_data in var_results['all_models']:
                    model_name = model_data['Model']
                    if model_name not in model_performance[var_type]:
                        model_performance[var_type][model_name] = {
                            'r2_values': [],
                            'rmse_values': [],
                            'experiments': []
                        }
                    
                    model_performance[var_type][model_name]['r2_values'].append(model_data['R2'])
                    model_performance[var_type][model_name]['rmse_values'].append(model_data['RMSE'])
                    model_performance[var_type][model_name]['experiments'].append(exp)
        
        # Calculate average performance and select best
        for var_type, models in model_performance.items():
            best_avg_r2 = -1
            best_model = None
            
            print(f"\\n📊 {var_type.upper()} MODELS:")
            for model_name, perf_data in models.items():
                avg_r2 = np.mean(perf_data['r2_values'])
                avg_rmse = np.mean(perf_data['rmse_values'])
                n_exp = len(perf_data['experiments'])
                
                print(f"  {model_name}:")
                print(f"    Average R² = {avg_r2:.4f}")
                print(f"    Average RMSE = {avg_rmse:.4f}")
                print(f"    Tested in {n_exp} experiments")
                
                if avg_r2 > best_avg_r2:
                    best_avg_r2 = avg_r2
                    best_model = {
                        'name': model_name,
                        'avg_r2': avg_r2,
                        'avg_rmse': avg_rmse,
                        'n_experiments': n_exp
                    }
            
            if var_type.lower() in ['biomass', 'substrate', 'product']:
                self.overall_best_models[var_type.lower()] = best_model
                print(f"\\n  🏆 BEST {var_type.upper()} MODEL: {best_model['name']} (Avg R²={best_model['avg_r2']:.4f})")
    
    def create_comparison_visualizations(self):
        \"\"\"Create visualizations comparing models across experiments\"\"\"
        if not self.best_models_by_experiment:
            raise ValueError("First run analyze_by_experiment()")
        
        # Prepare data for visualization
        experiments = []
        biomass_r2 = []
        substrate_r2 = []
        product_r2 = []
        
        for exp, results in self.best_models_by_experiment.items():
            experiments.append(exp)
            biomass_r2.append(results.get('Biomass', {}).get('r2', 0))
            substrate_r2.append(results.get('Substrate', {}).get('r2', 0))
            product_r2.append(results.get('Product', {}).get('r2', 0))
        
        # Create figure with subplots
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        fig.suptitle('Model Performance Comparison Across Experiments', fontsize=16)
        
        # 1. R² comparison by experiment and variable type
        ax1 = axes[0, 0]
        x = np.arange(len(experiments))
        width = 0.25
        
        ax1.bar(x - width, biomass_r2, width, label='Biomass', color='green', alpha=0.8)
        ax1.bar(x, substrate_r2, width, label='Substrate', color='blue', alpha=0.8)
        ax1.bar(x + width, product_r2, width, label='Product', color='red', alpha=0.8)
        
        ax1.set_xlabel('Experiment')
        ax1.set_ylabel('R²')
        ax1.set_title('Best Model R² by Experiment and Variable Type')
        ax1.set_xticks(x)
        ax1.set_xticklabels(experiments, rotation=45, ha='right')
        ax1.legend()
        ax1.grid(True, alpha=0.3)
        
        # Add value labels
        for i, (b, s, p) in enumerate(zip(biomass_r2, substrate_r2, product_r2)):
            if b > 0: ax1.text(i - width, b + 0.01, f'{b:.3f}', ha='center', va='bottom', fontsize=8)
            if s > 0: ax1.text(i, s + 0.01, f'{s:.3f}', ha='center', va='bottom', fontsize=8)
            if p > 0: ax1.text(i + width, p + 0.01, f'{p:.3f}', ha='center', va='bottom', fontsize=8)
        
        # 2. Model frequency heatmap
        ax2 = axes[0, 1]
        # This would show which models appear most frequently as best
        # Implementation depends on actual data structure
        ax2.text(0.5, 0.5, 'Model Frequency Analysis\\n(Most Used Models)', 
                ha='center', va='center', transform=ax2.transAxes)
        ax2.set_title('Most Frequently Selected Models')
        
        # 3. Parameter evolution across experiments
        ax3 = axes[1, 0]
        ax3.text(0.5, 0.5, 'Parameter Evolution\\nAcross Experiments', 
                ha='center', va='center', transform=ax3.transAxes)
        ax3.set_title('Parameter Trends')
        
        # 4. Overall best models summary
        ax4 = axes[1, 1]
        ax4.axis('off')
        
        summary_text = "🏆 OVERALL BEST MODELS\\n\\n"
        for var_type, model_info in self.overall_best_models.items():
            if model_info:
                summary_text += f"{var_type.upper()}:\\n"
                summary_text += f"  Model: {model_info['name']}\\n"
                summary_text += f"  Avg R²: {model_info['avg_r2']:.4f}\\n"
                summary_text += f"  Tested in: {model_info['n_experiments']} experiments\\n\\n"
        
        ax4.text(0.1, 0.9, summary_text, transform=ax4.transAxes, 
                fontsize=12, verticalalignment='top', fontfamily='monospace')
        ax4.set_title('Overall Best Models Summary')
        
        plt.tight_layout()
        plt.show()
    
    def generate_summary_table(self) -> pd.DataFrame:
        \"\"\"Generate a summary table of best models by experiment and type\"\"\"
        summary_data = []
        
        for exp, results in self.best_models_by_experiment.items():
            for var_type, var_results in results.items():
                summary_data.append({
                    'Experiment': exp,
                    'Variable_Type': var_type,
                    'Best_Model': var_results['best_model'],
                    'R2': var_results['r2'],
                    'RMSE': var_results['rmse']
                })
        
        summary_df = pd.DataFrame(summary_data)
        
        print("\\n📋 SUMMARY TABLE: BEST MODELS BY EXPERIMENT AND VARIABLE TYPE")
        print("="*80)
        print(summary_df.to_string(index=False))
        
        return summary_df

# Example usage
if __name__ == "__main__":
    print("🧬 Experimental Model Comparison System")
    print("="*60)
    
    # Example data structure with experiments
    example_data = {
        'Experiment': ['pH_7.0', 'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5', 'pH_7.5',
                      'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5',
                      'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5'],
        'Model': ['Monod', 'Logistic', 'Gompertz', 'Monod', 'Logistic', 'Gompertz',
                 'First_Order', 'Monod_Substrate', 'First_Order', 'Monod_Substrate',
                 'Luedeking_Piret', 'Linear', 'Luedeking_Piret', 'Linear'],
        'Type': ['Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass',
                'Substrate', 'Substrate', 'Substrate', 'Substrate',
                'Product', 'Product', 'Product', 'Product'],
        'R2': [0.9845, 0.9912, 0.9956, 0.9789, 0.9834, 0.9901,
              0.9723, 0.9856, 0.9698, 0.9812,
              0.9634, 0.9512, 0.9687, 0.9423],
        'RMSE': [0.0234, 0.0189, 0.0145, 0.0267, 0.0223, 0.0178,
                0.0312, 0.0245, 0.0334, 0.0289,
                0.0412, 0.0523, 0.0389, 0.0567],
        'mu_max': [0.45, 0.48, 0.52, 0.42, 0.44, 0.49,
                  None, None, None, None, None, None, None, None],
        'Ks': [None, None, None, None, None, None,
              2.1, 1.8, 2.3, 1.9, None, None, None, None]
    }
    
    # Create analyzer
    analyzer = ExperimentalModelAnalyzer()
    
    # Load data
    analyzer.load_results(data_dict=example_data)
    
    # Analyze by experiment
    results = analyzer.analyze_by_experiment()
    
    # Create visualizations
    analyzer.create_comparison_visualizations()
    
    # Generate summary table
    summary = analyzer.generate_summary_table()
    
    print("\\n✨ Analysis complete! Best models identified for each experiment and variable type.")
"""
    
    return code

# Estado global para almacenar resultados
class AppState:
    def __init__(self):
        self.current_analysis = ""
        self.current_code = ""
        self.current_language = "en"

app_state = AppState()

def export_report(export_format: str, language: str) -> Tuple[str, str]:
    """Exporta el reporte al formato seleccionado"""
    if not app_state.current_analysis:
        error_msg = {
            'en': "No analysis available to export",
            'es': "No hay análisis disponible para exportar",
            'fr': "Aucune analyse disponible pour exporter",
            'de': "Keine Analyse zum Exportieren verfügbar",
            'pt': "Nenhuma análise disponível para exportar"
        }
        return error_msg.get(language, error_msg['en']), ""
    
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    
    try:
        if export_format == "DOCX":
            filename = f"biotech_analysis_report_{timestamp}.docx"
            ReportExporter.export_to_docx(app_state.current_analysis, filename, language)
        else:  # PDF
            filename = f"biotech_analysis_report_{timestamp}.pdf"
            ReportExporter.export_to_pdf(app_state.current_analysis, filename, language)
        
        success_msg = TRANSLATIONS[language]['report_exported']
        return f"{success_msg} {filename}", filename
    except Exception as e:
        return f"Error: {str(e)}", ""

# Interfaz Gradio con soporte multiidioma y temas
def create_interface():
    # Estado inicial
    current_theme = "light"
    current_language = "en"
    
    def update_interface_language(language):
        """Actualiza el idioma de la interfaz"""
        app_state.current_language = language
        t = TRANSLATIONS[language]
        
        return [
            gr.update(value=f"# {t['title']}"),  # title_text
            gr.update(value=t['subtitle']),       # subtitle_text
            gr.update(label=t['upload_files']),   # files_input
            gr.update(label=t['select_model']),   # model_selector
            gr.update(label=t['select_language']), # language_selector
            gr.update(label=t['select_theme']),   # theme_selector
            gr.update(label=t['detail_level']),   # detail_level
            gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
            gr.update(value=t['analyze_button']), # analyze_btn
            gr.update(label=t['export_format']),  # export_format
            gr.update(value=t['export_button']),  # export_btn
            gr.update(label=t['comparative_analysis']), # analysis_output
            gr.update(label=t['implementation_code']),  # code_output
            gr.update(label=t['data_format'])    # data_format_accordion
        ]
    
    def process_and_store(files, model, detail, language, additional_specs):
        """Procesa archivos y almacena resultados"""
        if not files:
            error_msg = TRANSLATIONS[language]['error_no_files']
            return error_msg, ""
        
        analysis, code = process_files(files, model, detail, language, additional_specs)
        app_state.current_analysis = analysis
        app_state.current_code = code
        return analysis, code
    
    with gr.Blocks(theme=THEMES[current_theme]) as demo:
        # Componentes de UI
        with gr.Row():
            with gr.Column(scale=3):
                title_text = gr.Markdown(f"# {TRANSLATIONS[current_language]['title']}")
                subtitle_text = gr.Markdown(TRANSLATIONS[current_language]['subtitle'])
            with gr.Column(scale=1):
                with gr.Row():
                    language_selector = gr.Dropdown(
                        choices=[("English", "en"), ("Español", "es"), ("Français", "fr"), 
                                ("Deutsch", "de"), ("Português", "pt")],
                        value="en",
                        label=TRANSLATIONS[current_language]['select_language'],
                        interactive=True
                    )
                    theme_selector = gr.Dropdown(
                        choices=[("Light", "light"), ("Dark", "dark")],
                        value="light",
                        label=TRANSLATIONS[current_language]['select_theme'],
                        interactive=True
                    )
        
        with gr.Row():
            with gr.Column(scale=1):
                files_input = gr.File(
                    label=TRANSLATIONS[current_language]['upload_files'],
                    file_count="multiple",
                    file_types=[".csv", ".xlsx", ".xls", ".pdf", ".zip"],
                    type="filepath"
                )
                
                model_selector = gr.Dropdown(
                    choices=list(CLAUDE_MODELS.keys()),
                    value="claude-3-5-sonnet-20241022",
                    label=TRANSLATIONS[current_language]['select_model'],
                    info=f"{TRANSLATIONS[current_language]['best_for']}: {CLAUDE_MODELS['claude-3-5-sonnet-20241022']['best_for']}"
                )
                
                detail_level = gr.Radio(
                    choices=[
                        (TRANSLATIONS[current_language]['detailed'], "detailed"),
                        (TRANSLATIONS[current_language]['summarized'], "summarized")
                    ],
                    value="detailed",
                    label=TRANSLATIONS[current_language]['detail_level']
                )
                
                # Nueva entrada para especificaciones adicionales
                additional_specs = gr.Textbox(
                    label=TRANSLATIONS[current_language]['additional_specs'],
                    placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
                    lines=3,
                    max_lines=5,
                    interactive=True
                )
                
                analyze_btn = gr.Button(
                    TRANSLATIONS[current_language]['analyze_button'],
                    variant="primary",
                    size="lg"
                )
                
                gr.Markdown("---")
                
                export_format = gr.Radio(
                    choices=["DOCX", "PDF"],
                    value="PDF",
                    label=TRANSLATIONS[current_language]['export_format']
                )
                
                export_btn = gr.Button(
                    TRANSLATIONS[current_language]['export_button'],
                    variant="secondary"
                )
                
                export_status = gr.Textbox(
                    label="Export Status",
                    interactive=False,
                    visible=False
                )
                
                export_file = gr.File(
                    label="Download Report",
                    visible=False
                )
            
            with gr.Column(scale=2):
                analysis_output = gr.Markdown(
                    label=TRANSLATIONS[current_language]['comparative_analysis']
                )
                
                code_output = gr.Code(
                    label=TRANSLATIONS[current_language]['implementation_code'],
                    language="python",
                    interactive=True,
                    lines=20
                )
        
        data_format_accordion = gr.Accordion(
            label=TRANSLATIONS[current_language]['data_format'],
            open=False
        )
        
        with data_format_accordion:
            gr.Markdown("""
            ### Expected CSV/Excel structure:
            
            | Experiment | Model | Type | R2 | RMSE | AIC | BIC | mu_max | Ks | Parameters |
            |------------|-------|------|-----|------|-----|-----|--------|-------|------------|
            | pH_7.0 | Monod | Biomass | 0.985 | 0.023 | -45.2 | -42.1 | 0.45 | 2.1 | {...} |
            | pH_7.0 | Logistic | Biomass | 0.976 | 0.031 | -42.1 | -39.5 | 0.42 | - | {...} |
            | pH_7.0 | First_Order | Substrate | 0.992 | 0.018 | -48.5 | -45.2 | - | 1.8 | {...} |
            | pH_7.5 | Monod | Biomass | 0.978 | 0.027 | -44.1 | -41.2 | 0.43 | 2.2 | {...} |
            
            **Important columns:**
            - **Experiment**: Experimental condition identifier
            - **Model**: Model name
            - **Type**: Variable type (Biomass/Substrate/Product)
            - **R2, RMSE**: Fit quality metrics
            - **Parameters**: Model-specific parameters
            """)
        
        # Definir ejemplos
        examples = gr.Examples(
            examples=[
                [["examples/biomass_models_comparison.csv"], "claude-3-5-sonnet-20241022", "detailed", ""],
                [["examples/substrate_kinetics_results.xlsx"], "claude-3-5-sonnet-20241022", "summarized", "Focus on temperature effects"]
            ],
            inputs=[files_input, model_selector, detail_level, additional_specs],
            label=TRANSLATIONS[current_language]['examples']
        )
        
        # Eventos - Actualizado para incluir additional_specs
        language_selector.change(
            update_interface_language,
            inputs=[language_selector],
            outputs=[
                title_text, subtitle_text, files_input, model_selector,
                language_selector, theme_selector, detail_level, additional_specs,
                analyze_btn, export_format, export_btn, analysis_output, 
                code_output, data_format_accordion
            ]
        )
        
        def change_theme(theme_name):
            """Cambia el tema de la interfaz"""
            # Nota: En Gradio actual, cambiar el tema dinámicamente requiere recargar
            # Esta es una limitación conocida
            return gr.Info("Theme will be applied on next page load")
        
        theme_selector.change(
            change_theme,
            inputs=[theme_selector],
            outputs=[]
        )
        
        analyze_btn.click(
            fn=process_and_store,
            inputs=[files_input, model_selector, detail_level, language_selector, additional_specs],
            outputs=[analysis_output, code_output]
        )
        
        def handle_export(format, language):
            status, file = export_report(format, language)
            if file:
                return gr.update(value=status, visible=True), gr.update(value=file, visible=True)
            else:
                return gr.update(value=status, visible=True), gr.update(visible=False)
        
        export_btn.click(
            fn=handle_export,
            inputs=[export_format, language_selector],
            outputs=[export_status, export_file]
        )
    
    return demo

# Función principal
def main():
    if not os.getenv("ANTHROPIC_API_KEY"):
        print("⚠️ Configure ANTHROPIC_API_KEY in HuggingFace Space secrets")
        return gr.Interface(
            fn=lambda x: TRANSLATIONS['en']['error_no_api'],
            inputs=gr.Textbox(),
            outputs=gr.Textbox(),
            title="Configuration Error"
        )
    
    return create_interface()

# Para ejecución local
if __name__ == "__main__":
    demo = main()
    if demo:
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )