Spaces:
Paused
Paused
File size: 7,763 Bytes
6b29344 65aa5a5 fe61d2d 65aa5a5 d0726f5 65aa5a5 6b29344 6555fdc dfc02f9 6b29344 d0726f5 6555fdc d0726f5 6b29344 fe61d2d 6b29344 d0726f5 6b29344 d0726f5 5d7bd20 d0726f5 fe61d2d 6b29344 d0726f5 6b29344 dfc02f9 6b29344 2ebe745 0576ce3 678ce59 6a2015d 6b29344 0576ce3 6b29344 d1e0ac0 dff880e d1e0ac0 6b29344 d1e0ac0 6b29344 d1e0ac0 6b29344 fe61d2d d25cc99 330b156 6b29344 fe61d2d 6b29344 d1e0ac0 6b29344 d1e0ac0 01e6a62 d1e0ac0 6b29344 d1e0ac0 6b29344 d25cc99 6b29344 2401693 6b29344 01e6a62 6b29344 01e6a62 6b29344 0576ce3 01e6a62 6b29344 0576ce3 6b29344 2401693 6b29344 19f6384 c20d411 03c8c47 c20d411 6b29344 19f6384 6b29344 c20d411 03c8c47 c20d411 19f6384 c20d411 6b29344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import torch
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# ——— CONFIG ———
REPO_ID = "CodCodingCode/llama-3.1-8b-clinical"
SUBFOLDER = "checkpoint-45000"
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if not HF_TOKEN:
raise RuntimeError("Missing HUGGINGFACE_HUB_TOKEN in env")
# ——— 1) Download the full repo ———
local_cache = snapshot_download(
repo_id=REPO_ID,
token=HF_TOKEN,
)
print("[DEBUG] snapshot_download → local_cache:", local_cache)
import pathlib
print(
"[DEBUG] MODEL root contents:",
list(pathlib.Path(local_cache).glob(f"{SUBFOLDER}/*")),
)
# ——— 2) Repo root contains tokenizer.json; model shards live in the checkpoint subfolder ———
MODEL_DIR = local_cache
MODEL_SUBFOLDER = SUBFOLDER
print("[DEBUG] MODEL_DIR:", MODEL_DIR)
print("[DEBUG] MODEL_DIR files:", os.listdir(MODEL_DIR))
print("[DEBUG] Checkpoint files:", os.listdir(os.path.join(MODEL_DIR, MODEL_SUBFOLDER)))
# ——— 3) Load tokenizer & model from disk ———
tokenizer = AutoTokenizer.from_pretrained(
MODEL_DIR,
use_fast=True,
)
print("[DEBUG] Loaded fast tokenizer object:", tokenizer, "type:", type(tokenizer))
# Confirm tokenizer files are present
import os
print("[DEBUG] Files in MODEL_DIR for tokenizer:", os.listdir(MODEL_DIR))
# Inspect tokenizer's initialization arguments
try:
print("[DEBUG] Tokenizer init_kwargs:", tokenizer.init_kwargs)
except AttributeError:
print("[DEBUG] No init_kwargs attribute on tokenizer.")
model = AutoModelForCausalLM.from_pretrained(
MODEL_DIR,
subfolder=MODEL_SUBFOLDER,
device_map="auto",
torch_dtype=torch.float16,
)
model.eval()
print(
"[DEBUG] Loaded model object:",
model.__class__.__name__,
"device:",
next(model.parameters()).device,
)
# === Role Agent with instruction/input/output format ===
class RoleAgent:
def __init__(self, role_instruction, tokenizer, model):
self.tokenizer = tokenizer
self.model = model
self.role_instruction = role_instruction
def act(self, input_text):
prompt = (
f"instruction: {self.role_instruction}\n"
f"input: {input_text}\n"
f"output:"
)
encoding = self.tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(self.model.device) for k, v in encoding.items()}
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id,
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
thinking = ""
answer = response
if "Output:" in response:
# Split on the last occurrence of 'Output:' in case it's repeated
answer = response.rsplit("Output:", 1)[-1].strip()
else:
# Fallback: if thinking/answer/end tags exist, use previous logic
tags = ("THINKING:", "ANSWER:", "END")
if all(tag in response for tag in tags):
print("[FIX] tagged response detected:", response)
block = response.split("THINKING:", 1)[1].split("END", 1)[0]
thinking = block.split("ANSWER:", 1)[0].strip()
answer = block.split("ANSWER:", 1)[1].strip()
print(
"[DEBUG] thinking/answer split:",
response,
"→",
"[THINKING] thinking:",
thinking,
"[ANSWER] answer:",
answer,
)
return {"thinking": thinking, "output": answer}
# === Agents ===
summarizer = RoleAgent(
role_instruction="You are a clinical summarizer trained to extract structured vignettes from doctor–patient dialogues.",
tokenizer=tokenizer,
model=model,
)
diagnoser = RoleAgent(
role_instruction="You are a board-certified diagnostician that diagnoses patients.",
tokenizer=tokenizer,
model=model,
)
questioner = RoleAgent(
role_instruction="You are a physician asking questions to diagnose a patient.",
tokenizer=tokenizer,
model=model,
)
treatment_agent = RoleAgent(
role_instruction="You are a board-certified clinician. Based on the diagnosis and patient vignette provided below, suggest a concise treatment plan that could realistically be initiated by a primary care physician or psychiatrist.",
tokenizer=tokenizer,
model=model,
)
"""[DEBUG] prompt: Instruction: You are a clinical summarizer trained to extract structured vignettes from doctor–patient dialogues.
Input: Doctor: What brings you in today?
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
Previous Vignette:
Output:
Instruction: You are a clinical summarizer trained to extract structured vignettes from doctor–patient dialogues.
Input: Doctor: What brings you in today?
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
Previous Vignette:
Output: The patient is a 15-year-old male presenting with knee pain."""
# === Inference State ===
conversation_history = []
summary = ""
diagnosis = ""
# === Gradio Inference ===
def simulate_interaction(user_input, iterations=1):
history = [f"Doctor: What brings you in today?", f"Patient: {user_input}"]
summary, diagnosis = "", ""
treatment_out = None
for i in range(iterations):
# Summarize
sum_in = "\n".join(history) + f"\nPrevious Vignette: {summary}"
sum_out = summarizer.act(sum_in)
summary = sum_out["output"]
# Diagnose
diag_out = diagnoser.act(summary)
diagnosis = diag_out["output"]
# Question
q_in = f"Vignette: {summary}\n" f"Current Estimated Diagnosis:\n" f"{diagnosis}"
q_out = questioner.act(q_in)
history.append(f"Doctor: {q_out['output']}")
# Treatment
treatment_out = treatment_agent.act(f"Diagnosis: {diagnosis}\n")
return {
"summary": sum_out,
"diagnosis": diag_out,
"question": q_out,
"treatment": treatment_out,
"conversation": "\n".join(history),
}
# === Gradio UI ===
def ui_fn(user_input):
res = simulate_interaction(user_input)
return f"""📋 Vignette Summary:
💭 THINKING: {res['summary']['thinking']}
ANSWER: {res['summary']['output']}
🩺 Diagnosis:
💭 THINKING: {res['diagnosis']['thinking']}
ANSWER: {res['diagnosis']['output']}
T
❓ Follow-up Question:
💭 THINKING: {res['question']['thinking']}
ANSWER: {res['question']['output']}
💊 Treatment Plan:
{res['treatment']['output']}
💬 Conversation:
{res['conversation']}
"""
# === Stateful Gradio UI ===
def stateful_ui_fn(user_input, history):
# Initialize or retrieve history list
history = history or []
# Append the new patient utterance
history.append(f"Patient: {user_input}")
# Run one round of simulation
res = simulate_interaction(user_input)
# Extract last doctor line from the fresh conversation
last_line = res["question"]["output"]
# Append the doctor's new line
history.append(last_line)
# Build the displayed conversation
convo = "\n".join(history)
# Return both the display text and updated history
return convo, history
demo = gr.Interface(
fn=stateful_ui_fn,
inputs=[
gr.Textbox(label="Patient Response"),
gr.State(), # holds the conversation history
],
outputs=[
gr.Textbox(label="Doctor Simulation Output"),
gr.State(), # returns the updated history
],
title="🧠 AI Doctor Multi-Agent Reasoning",
)
if __name__ == "__main__":
demo.launch(share=True)
|