Spaces:
Paused
Paused
File size: 11,833 Bytes
6b29344 65aa5a5 fe61d2d 65aa5a5 d0726f5 65aa5a5 6b29344 6555fdc dfc02f9 6b29344 d0726f5 6555fdc d0726f5 6b29344 fe61d2d 6b29344 d0726f5 6b29344 d0726f5 5d7bd20 d0726f5 fe61d2d 6b29344 d0726f5 6b29344 dfc02f9 6b29344 2ebe745 678ce59 6a2015d 6b29344 7c03503 6b29344 0576ce3 6b29344 d1e0ac0 dff880e d1e0ac0 6b29344 ceaba60 6b29344 d1e0ac0 6b29344 d1e0ac0 6b29344 ceaba60 d25cc99 ceaba60 330b156 ceaba60 330b156 6b29344 7c03503 fe61d2d 6b29344 d1e0ac0 6b29344 d1e0ac0 01e6a62 d1e0ac0 6b29344 d1e0ac0 6b29344 d25cc99 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 2401693 474ac56 2401693 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 474ac56 6b29344 19f6384 c20d411 474ac56 6b29344 474ac56 19f6384 474ac56 c20d411 474ac56 03c8c47 c20d411 474ac56 19f6384 c20d411 474ac56 6b29344 474ac56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import torch
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# βββ CONFIG βββ
REPO_ID = "CodCodingCode/llama-3.1-8b-clinical"
SUBFOLDER = "checkpoint-45000"
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if not HF_TOKEN:
raise RuntimeError("Missing HUGGINGFACE_HUB_TOKEN in env")
# βββ 1) Download the full repo βββ
local_cache = snapshot_download(
repo_id=REPO_ID,
token=HF_TOKEN,
)
print("[DEBUG] snapshot_download β local_cache:", local_cache)
import pathlib
print(
"[DEBUG] MODEL root contents:",
list(pathlib.Path(local_cache).glob(f"{SUBFOLDER}/*")),
)
# βββ 2) Repo root contains tokenizer.json; model shards live in the checkpoint subfolder βββ
MODEL_DIR = local_cache
MODEL_SUBFOLDER = SUBFOLDER
print("[DEBUG] MODEL_DIR:", MODEL_DIR)
print("[DEBUG] MODEL_DIR files:", os.listdir(MODEL_DIR))
print("[DEBUG] Checkpoint files:", os.listdir(os.path.join(MODEL_DIR, MODEL_SUBFOLDER)))
# βββ 3) Load tokenizer & model from disk βββ
tokenizer = AutoTokenizer.from_pretrained(
MODEL_DIR,
use_fast=True,
)
print("[DEBUG] Loaded fast tokenizer object:", tokenizer, "type:", type(tokenizer))
# Confirm tokenizer files are present
import os
print("[DEBUG] Files in MODEL_DIR for tokenizer:", os.listdir(MODEL_DIR))
# Inspect tokenizer's initialization arguments
try:
print("[DEBUG] Tokenizer init_kwargs:", tokenizer.init_kwargs)
except AttributeError:
print("[DEBUG] No init_kwargs attribute on tokenizer.")
model = AutoModelForCausalLM.from_pretrained(
MODEL_DIR,
subfolder=MODEL_SUBFOLDER,
device_map="auto",
torch_dtype=torch.float16,
)
model.eval()
print(
"[DEBUG] Loaded model object:",
model.__class__.__name__,
"device:",
next(model.parameters()).device,
)
# === Role Agent with instruction/input/output format ===
class RoleAgent:
def __init__(self, role_instruction, tokenizer, model):
self.tokenizer = tokenizer
self.model = model
self.role_instruction = role_instruction
def act(self, input_text):
# Initialize thinking variable at the start
thinking = "" # Initialize here, at the beginning of the method
prompt = (
f"instruction: {self.role_instruction}\n"
f"input: {input_text}\n"
f"output:"
)
encoding = self.tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(self.model.device) for k, v in encoding.items()}
outputs = self.model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id,
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generated content after the prompt
prompt_length = len(prompt)
if len(response) > prompt_length:
generated_text = response[prompt_length:].strip()
else:
generated_text = response.strip()
# Clean up the response - remove any repeated instruction/input/output patterns
lines = generated_text.split("\n")
clean_lines = []
for line in lines:
line = line.strip()
# Skip lines that look like instruction formatting
if (
line.startswith("instruction:")
or line.startswith("input:")
or line.startswith("output:")
or line == ""
):
continue
clean_lines.append(line)
# Join the clean lines and take the first substantial response
if clean_lines:
answer = clean_lines[0]
# If there are multiple clean lines, take the first one that's substantial
for line in clean_lines:
if len(line) > 20: # Arbitrary threshold for substantial content
answer = line
break
else:
# Fallback: try to extract after "output:" if present
if "output:" in generated_text.lower():
parts = generated_text.lower().split("output:")
if len(parts) > 1:
answer = parts[-1].strip()
else:
answer = generated_text
else:
answer = generated_text
# Additional cleanup - remove any remaining instruction artifacts
answer = (
answer.replace("instruction:", "")
.replace("input:", "")
.replace("output:", "")
.strip()
)
# If answer is still messy, try to extract the actual medical content
if "patient" in answer.lower() and len(answer) > 100:
# Look for sentences that contain medical information
sentences = answer.split(".")
medical_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 10 and any(
word in sentence.lower()
for word in [
"patient",
"pain",
"symptom",
"diagnosis",
"treatment",
"knee",
"reports",
"experiencing",
]
):
medical_sentences.append(sentence)
if medical_sentences:
answer = ". ".join(
medical_sentences[:2]
) # Take first 2 medical sentences
if not answer.endswith("."):
answer += "."
print(
f"[CLEANED RESPONSE] Original length: {len(response)}, Cleaned: '{answer}'"
)
# Return both thinking and answer
return {"thinking": thinking, "output": answer}
# === Agents ===
summarizer = RoleAgent(
role_instruction="You are a clinical summarizer trained to extract structured vignettes from doctorβpatient dialogues.",
tokenizer=tokenizer,
model=model,
)
diagnoser = RoleAgent(
role_instruction="You are a board-certified diagnostician that diagnoses patients.",
tokenizer=tokenizer,
model=model,
)
questioner = RoleAgent(
role_instruction="You are a physician asking questions to diagnose a patient.",
tokenizer=tokenizer,
model=model,
)
treatment_agent = RoleAgent(
role_instruction="You are a board-certified clinician. Based on the diagnosis and patient vignette provided below, suggest a concise treatment plan that could realistically be initiated by a primary care physician or psychiatrist.",
tokenizer=tokenizer,
model=model,
)
"""[DEBUG] prompt: Instruction: You are a clinical summarizer trained to extract structured vignettes from doctorβpatient dialogues.
Input: Doctor: What brings you in today?
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
Previous Vignette:
Output:
Instruction: You are a clinical summarizer trained to extract structured vignettes from doctorβpatient dialogues.
Input: Doctor: What brings you in today?
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
Previous Vignette:
Output: The patient is a 15-year-old male presenting with knee pain."""
# === Inference State ===
conversation_history = []
summary = ""
diagnosis = ""
# === Gradio Inference ===
def simulate_interaction(user_input, conversation_history=None):
"""Single turn interaction - no iterations, uses accumulated history"""
if conversation_history is None:
history = [f"Doctor: What brings you in today?", f"Patient: {user_input}"]
else:
history = conversation_history.copy()
history.append(f"Patient: {user_input}")
# Summarize the full conversation history
sum_in = "\n".join(history)
sum_out = summarizer.act(sum_in)
summary = sum_out["output"]
# Diagnose based on summary
diag_out = diagnoser.act(summary)
diagnosis = diag_out["output"]
# Generate next question based on current understanding
q_in = f"Vignette: {summary}\nCurrent Estimated Diagnosis: {diagnosis}"
q_out = questioner.act(q_in)
# Add doctor's response to history
history.append(f"Doctor: {q_out['output']}")
# Generate treatment plan (but don't end conversation)
treatment_out = treatment_agent.act(f"Diagnosis: {diagnosis}\nVignette: {summary}")
return {
"summary": sum_out,
"diagnosis": diag_out,
"question": q_out,
"treatment": treatment_out,
"conversation": history, # Return full history list
}
# === Gradio UI ===
def ui_fn(user_input):
"""Non-stateful version for testing"""
res = simulate_interaction(user_input)
return f"""π Vignette Summary:
π THINKING: {res['summary']['thinking']}
π SUMMARY: {res['summary']['output']}
π©Ί Diagnosis:
π THINKING: {res['diagnosis']['thinking']}
π DIAGNOSIS: {res['diagnosis']['output']}
β Follow-up Question:
π THINKING: {res['question']['thinking']}
π¨ββοΈ DOCTOR: {res['question']['output']}
π Treatment Plan:
π THINKING: {res['treatment']['thinking']}
π TREATMENT: {res['treatment']['output']}
π¬ Full Conversation:
{chr(10).join(res['conversation'])}
"""
# === Stateful Gradio UI ===
def stateful_ui_fn(user_input, history):
"""Proper stateful conversation handler"""
# Initialize history if first interaction
if history is None:
history = []
# Run one turn of interaction with accumulated history
res = simulate_interaction(user_input, history)
# Get the updated conversation history
updated_history = res["conversation"]
# Format the display output
display_output = f"""π¬ Conversation:
{chr(10).join(updated_history)}
π Current Assessment:
π Diagnosis: {res['diagnosis']['output']}
π Treatment Plan: {res['treatment']['output']}
"""
# Return display text and updated history for next turn
return display_output, updated_history
def chat_interface(user_input, history):
"""Alternative chat-style interface"""
if history is None:
history = []
# Run interaction
res = simulate_interaction(user_input, history)
updated_history = res["conversation"]
# Return just the doctor's latest response and updated history
doctor_response = res["question"]["output"]
return doctor_response, updated_history
# Create two different interfaces
demo_stateful = gr.Interface(
fn=stateful_ui_fn,
inputs=[
gr.Textbox(
label="Patient Response",
placeholder="Describe your symptoms or answer the doctor's question...",
),
gr.State(), # holds the conversation history
],
outputs=[
gr.Textbox(label="Medical Consultation", lines=15),
gr.State(), # returns the updated history
],
title="π§ AI Doctor - Full Medical Consultation",
description="Have a conversation with an AI doctor. Each response builds on the previous conversation.",
)
demo_chat = gr.Interface(
fn=chat_interface,
inputs=[
gr.Textbox(label="Your Response", placeholder="Tell me about your symptoms..."),
gr.State(),
],
outputs=[
gr.Textbox(label="Doctor", lines=5),
gr.State(),
],
title="π©Ί AI Doctor Chat",
description="Simple chat interface with the AI doctor.",
)
if __name__ == "__main__":
# Launch the stateful version by default
demo_stateful.launch(share=True)
# Uncomment the line below to use the chat version instead:
# demo_chat.launch(share=True)
|