JasonSmithSO's picture
Upload 578 files
8866644 verified
# ComfyUI wrapper for Kwai-Kolors
Rudimentary wrapper that runs Kwai-Kolors text2image pipeline using diffusers.
## Update - safetensors
Added alternative way to load the ChatGLM3 model from single safetensors file (the configs are included in this repo already).
Including already quantized models:
![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/e161eee6-ffd8-4945-8905-1ca47f2a5ef1)
https://huggingface.co/Kijai/ChatGLM3-safetensors/upload/main
goes into:
`ComfyUI\models\LLM\checkpoints`
![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/2a6c6f3f-e159-4a82-b16f-4956f9affb25)
![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/a31ab13a-b321-4cc6-b853-4a4e078eb6dc)
## Installation:
Clone this repository to 'ComfyUI/custom_nodes` folder.
Install the dependencies in requirements.txt, transformers version 4.38.0 minimum is required:
`pip install -r requirements.txt`
or if you use portable (run this in ComfyUI_windows_portable -folder):
`python_embedded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-KwaiKolorsWrapper\requirements.txt`
Models (fp16, 16.5GB) are automatically downloaded from https://huggingface.co/Kwai-Kolors/Kolors/tree/main
to `ComfyUI/models/diffusers/Kolors`
Model folder structure needs to be the following:
```
PS C:\ComfyUI_windows_portable\ComfyUI\models\diffusers\Kolors> tree /F
β”‚ model_index.json
β”‚
β”œβ”€β”€β”€scheduler
β”‚ scheduler_config.json
β”‚
β”œβ”€β”€β”€text_encoder
β”‚ config.json
β”‚ pytorch_model-00001-of-00007.bin
β”‚ pytorch_model-00002-of-00007.bin
β”‚ pytorch_model-00003-of-00007.bin
β”‚ pytorch_model-00004-of-00007.bin
β”‚ pytorch_model-00005-of-00007.bin
β”‚ pytorch_model-00006-of-00007.bin
β”‚ pytorch_model-00007-of-00007.bin
β”‚ pytorch_model.bin.index.json
β”‚ tokenizer.model
β”‚ tokenizer_config.json
β”‚ vocab.txt
β”‚
└───unet
config.json
diffusion_pytorch_model.fp16.safetensors
```
To run this, the text enconder is what takes most of the VRAM, but can be quantized to fit approximately these amounts:
| Model | Size |
|--------|------|
| fp16 | ~13 GB|
| quant8 | ~8 GB |
| quant4 | ~4 GB |
After that, the sampling single image at 1024 can be expected to take similar amounts than SDXL. For VAE the base SDXL VAE is used.
![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/ada4ac93-58ee-4957-96cd-2b327579d4f8)
![image](https://github.com/kijai/ComfyUI-KwaiKolorsWrapper/assets/40791699/b6a17074-be09-4075-b66f-7857c871057a)