Spaces:
Configuration error
Configuration error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
from tqdm import tqdm | |
from timm.models.layers import DropPath | |
from timm.models.vision_transformer import Mlp | |
from .utils import auto_grad_checkpoint, to_2tuple | |
from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, SizeEmbedder | |
from .PixArt import PixArt, get_2d_sincos_pos_embed | |
class PatchEmbed(nn.Module): | |
""" | |
2D Image to Patch Embedding | |
""" | |
def __init__( | |
self, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
norm_layer=None, | |
flatten=True, | |
bias=True, | |
): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.flatten = flatten | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x | |
class PixArtMSBlock(nn.Module): | |
""" | |
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, | |
sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.attn = AttentionKVCompress( | |
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, | |
qk_norm=qk_norm, **block_kwargs | |
) | |
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
# to be compatible with lower version pytorch | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) | |
def forward(self, x, y, t, mask=None, HW=None, **kwargs): | |
B, N, C = x.shape | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) | |
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) | |
x = x + self.cross_attn(x, y, mask) | |
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
return x | |
### Core PixArt Model ### | |
class PixArtMS(PixArt): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
learn_sigma=True, | |
pred_sigma=True, | |
drop_path: float = 0., | |
caption_channels=4096, | |
pe_interpolation=None, | |
pe_precision=None, | |
config=None, | |
model_max_length=120, | |
micro_condition=True, | |
qk_norm=False, | |
kv_compress_config=None, | |
**kwargs, | |
): | |
super().__init__( | |
input_size=input_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
hidden_size=hidden_size, | |
depth=depth, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
class_dropout_prob=class_dropout_prob, | |
learn_sigma=learn_sigma, | |
pred_sigma=pred_sigma, | |
drop_path=drop_path, | |
pe_interpolation=pe_interpolation, | |
config=config, | |
model_max_length=model_max_length, | |
qk_norm=qk_norm, | |
kv_compress_config=kv_compress_config, | |
**kwargs, | |
) | |
self.dtype = torch.get_default_dtype() | |
self.h = self.w = 0 | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.t_block = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
) | |
self.x_embedder = PatchEmbed(patch_size, in_channels, hidden_size, bias=True) | |
self.y_embedder = CaptionEmbedder(in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length) | |
self.micro_conditioning = micro_condition | |
if self.micro_conditioning: | |
self.csize_embedder = SizeEmbedder(hidden_size//3) # c_size embed | |
self.ar_embedder = SizeEmbedder(hidden_size//3) # aspect ratio embed | |
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
if kv_compress_config is None: | |
kv_compress_config = { | |
'sampling': None, | |
'scale_factor': 1, | |
'kv_compress_layer': [], | |
} | |
self.blocks = nn.ModuleList([ | |
PixArtMSBlock( | |
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], | |
input_size=(input_size // patch_size, input_size // patch_size), | |
sampling=kv_compress_config['sampling'], | |
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, | |
qk_norm=qk_norm, | |
) | |
for i in range(depth) | |
]) | |
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
def forward_raw(self, x, t, y, mask=None, data_info=None, **kwargs): | |
""" | |
Original forward pass of PixArt. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N, 1, 120, C) tensor of class labels | |
""" | |
bs = x.shape[0] | |
x = x.to(self.dtype) | |
timestep = t.to(self.dtype) | |
y = y.to(self.dtype) | |
pe_interpolation = self.pe_interpolation | |
if pe_interpolation is None or self.pe_precision is not None: | |
# calculate pe_interpolation on-the-fly | |
pe_interpolation = round((x.shape[-1]+x.shape[-2])/2.0 / (512/8.0), self.pe_precision or 0) | |
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size | |
pos_embed = torch.from_numpy( | |
get_2d_sincos_pos_embed( | |
self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=pe_interpolation, | |
base_size=self.base_size | |
) | |
).unsqueeze(0).to(device=x.device, dtype=self.dtype) | |
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
t = self.t_embedder(timestep) # (N, D) | |
if self.micro_conditioning: | |
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) | |
csize = self.csize_embedder(c_size, bs) # (N, D) | |
ar = self.ar_embedder(ar, bs) # (N, D) | |
t = t + torch.cat([csize, ar], dim=1) | |
t0 = self.t_block(t) | |
y = self.y_embedder(y, self.training) # (N, D) | |
if mask is not None: | |
if mask.shape[0] != y.shape[0]: | |
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
mask = mask.squeeze(1).squeeze(1) | |
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
y_lens = mask.sum(dim=1).tolist() | |
else: | |
y_lens = [y.shape[2]] * y.shape[0] | |
y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
for block in self.blocks: | |
x = auto_grad_checkpoint(block, x, y, t0, y_lens, (self.h, self.w), **kwargs) # (N, T, D) #support grad checkpoint | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, **kwargs): | |
""" | |
Forward pass that adapts comfy input to original forward function | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
timesteps: (N,) tensor of diffusion timesteps | |
context: (N, 1, 120, C) conditioning | |
img_hw: height|width conditioning | |
aspect_ratio: aspect ratio conditioning | |
""" | |
## size/ar from cond with fallback based on the latent image shape. | |
bs = x.shape[0] | |
data_info = {} | |
if img_hw is None: | |
data_info["img_hw"] = torch.tensor( | |
[[x.shape[2]*8, x.shape[3]*8]], | |
dtype=self.dtype, | |
device=x.device | |
).repeat(bs, 1) | |
else: | |
data_info["img_hw"] = img_hw.to(dtype=x.dtype, device=x.device) | |
if aspect_ratio is None or True: | |
data_info["aspect_ratio"] = torch.tensor( | |
[[x.shape[2]/x.shape[3]]], | |
dtype=self.dtype, | |
device=x.device | |
).repeat(bs, 1) | |
else: | |
data_info["aspect_ratio"] = aspect_ratio.to(dtype=x.dtype, device=x.device) | |
## Still accepts the input w/o that dim but returns garbage | |
if len(context.shape) == 3: | |
context = context.unsqueeze(1) | |
## run original forward pass | |
out = self.forward_raw( | |
x = x.to(self.dtype), | |
t = timesteps.to(self.dtype), | |
y = context.to(self.dtype), | |
data_info=data_info, | |
) | |
## only return EPS | |
out = out.to(torch.float) | |
eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] | |
return eps | |
def unpatchify(self, x): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
assert self.h * self.w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p)) | |
return imgs | |