JasonSmithSO's picture
Upload 777 files
0034848 verified
import random
import warnings
from typing import Any, Dict, List, Sequence, Tuple
import cv2
import numpy as np
from custom_albumentations import random_utils
from custom_albumentations.augmentations import functional as FMain
from custom_albumentations.augmentations.blur import functional as F
from custom_albumentations.core.transforms_interface import (
ImageOnlyTransform,
ScaleFloatType,
ScaleIntType,
to_tuple,
)
__all__ = ["Blur", "MotionBlur", "GaussianBlur", "GlassBlur", "AdvancedBlur", "MedianBlur", "Defocus", "ZoomBlur"]
class Blur(ImageOnlyTransform):
"""Blur the input image using a random-sized kernel.
Args:
blur_limit (int, (int, int)): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.blur(img, ksize)
def get_params(self) -> Dict[str, Any]:
return {"ksize": int(random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))))}
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return ("blur_limit",)
class MotionBlur(Blur):
"""Apply motion blur to the input image using a random-sized kernel.
Args:
blur_limit (int): maximum kernel size for blurring the input image.
Should be in range [3, inf). Default: (3, 7).
allow_shifted (bool): if set to true creates non shifted kernels only,
otherwise creates randomly shifted kernels. Default: True.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = 7,
allow_shifted: bool = True,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(blur_limit=blur_limit, always_apply=always_apply, p=p)
self.allow_shifted = allow_shifted
if not allow_shifted and self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError(f"Blur limit must be odd when centered=True. Got: {self.blur_limit}")
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return super().get_transform_init_args_names() + ("allow_shifted",)
def apply(self, img: np.ndarray, kernel: np.ndarray = None, **params) -> np.ndarray: # type: ignore
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, Any]:
ksize = random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2)))
if ksize <= 2:
raise ValueError("ksize must be > 2. Got: {}".format(ksize))
kernel = np.zeros((ksize, ksize), dtype=np.uint8)
x1, x2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
if x1 == x2:
y1, y2 = random.sample(range(ksize), 2)
else:
y1, y2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1)
def make_odd_val(v1, v2):
len_v = abs(v1 - v2) + 1
if len_v % 2 != 1:
if v2 > v1:
v2 -= 1
else:
v1 -= 1
return v1, v2
if not self.allow_shifted:
x1, x2 = make_odd_val(x1, x2)
y1, y2 = make_odd_val(y1, y2)
xc = (x1 + x2) / 2
yc = (y1 + y2) / 2
center = ksize / 2 - 0.5
dx = xc - center
dy = yc - center
x1, x2 = [int(i - dx) for i in [x1, x2]]
y1, y2 = [int(i - dy) for i in [y1, y2]]
cv2.line(kernel, (x1, y1), (x2, y2), 1, thickness=1)
# Normalize kernel
return {"kernel": kernel.astype(np.float32) / np.sum(kernel)}
class MedianBlur(Blur):
"""Blur the input image using a median filter with a random aperture linear size.
Args:
blur_limit (int): maximum aperture linear size for blurring the input image.
Must be odd and in range [3, inf). Default: (3, 7).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5):
super().__init__(blur_limit, always_apply, p)
if self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1:
raise ValueError("MedianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray:
return F.median_blur(img, ksize)
class GaussianBlur(ImageOnlyTransform):
"""Blur the input image using a Gaussian filter with a random kernel size.
Args:
blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigma_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigma_limit: ScaleFloatType = 0,
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 0)
self.sigma_limit = to_tuple(sigma_limit if sigma_limit is not None else 0, 0)
if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0:
self.blur_limit = 3, max(3, self.blur_limit[1])
warnings.warn(
"blur_limit and sigma_limit minimum value can not be both equal to 0. "
"blur_limit minimum value changed to 3."
)
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("GaussianBlur supports only odd blur limits.")
def apply(self, img: np.ndarray, ksize: int = 3, sigma: float = 0, **params) -> np.ndarray:
return F.gaussian_blur(img, ksize, sigma=sigma)
def get_params(self) -> Dict[str, float]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1)
if ksize != 0 and ksize % 2 != 1:
ksize = (ksize + 1) % (self.blur_limit[1] + 1)
return {"ksize": ksize, "sigma": random.uniform(*self.sigma_limit)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("blur_limit", "sigma_limit")
class GlassBlur(Blur):
"""Apply glass noise to the input image.
Args:
sigma (float): standard deviation for Gaussian kernel.
max_delta (int): max distance between pixels which are swapped.
iterations (int): number of repeats.
Should be in range [1, inf). Default: (2).
mode (str): mode of computation: fast or exact. Default: "fast".
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Reference:
| https://arxiv.org/abs/1903.12261
| https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
"""
def __init__(
self,
sigma: float = 0.7,
max_delta: int = 4,
iterations: int = 2,
always_apply: bool = False,
mode: str = "fast",
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
if iterations < 1:
raise ValueError(f"Iterations should be more or equal to 1, but we got {iterations}")
if mode not in ["fast", "exact"]:
raise ValueError(f"Mode should be 'fast' or 'exact', but we got {mode}")
self.sigma = sigma
self.max_delta = max_delta
self.iterations = iterations
self.mode = mode
def apply(self, img: np.ndarray, dxy: np.ndarray = None, **params) -> np.ndarray: # type: ignore
assert dxy is not None
return F.glass_blur(img, self.sigma, self.max_delta, self.iterations, dxy, self.mode)
def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, np.ndarray]:
img = params["image"]
# generate array containing all necessary values for transformations
width_pixels = img.shape[0] - self.max_delta * 2
height_pixels = img.shape[1] - self.max_delta * 2
total_pixels = width_pixels * height_pixels
dxy = random_utils.randint(-self.max_delta, self.max_delta, size=(total_pixels, self.iterations, 2))
return {"dxy": dxy}
def get_transform_init_args_names(self) -> Tuple[str, str, str]:
return ("sigma", "max_delta", "iterations")
@property
def targets_as_params(self) -> List[str]:
return ["image"]
class AdvancedBlur(ImageOnlyTransform):
"""Blur the input image using a Generalized Normal filter with a randomly selected parameters.
This transform also adds multiplicative noise to generated kernel before convolution.
Args:
blur_limit: maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigmaX_limit: Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigmaX_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
sigmaY_limit: Same as `sigmaY_limit` for another dimension.
rotate_limit: Range from which a random angle used to rotate Gaussian kernel is picked.
If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90).
beta_limit: Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution
tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0).
noise_limit: Multiplicative factor that control strength of kernel noise. Must be positive and preferably
centered around 1.0. If set single value `noise_limit` will be in range (0, noise_limit).
Default: (0.75, 1.25).
p (float): probability of applying the transform. Default: 0.5.
Reference:
https://arxiv.org/abs/2107.10833
Targets:
image
Image types:
uint8, float32
"""
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigmaX_limit: ScaleFloatType = (0.2, 1.0),
sigmaY_limit: ScaleFloatType = (0.2, 1.0),
rotate_limit: ScaleIntType = 90,
beta_limit: ScaleFloatType = (0.5, 8.0),
noise_limit: ScaleFloatType = (0.9, 1.1),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.blur_limit = to_tuple(blur_limit, 3)
self.sigmaX_limit = self.__check_values(to_tuple(sigmaX_limit, 0.0), name="sigmaX_limit")
self.sigmaY_limit = self.__check_values(to_tuple(sigmaY_limit, 0.0), name="sigmaY_limit")
self.rotate_limit = to_tuple(rotate_limit)
self.beta_limit = to_tuple(beta_limit, low=0.0)
self.noise_limit = self.__check_values(to_tuple(noise_limit, 0.0), name="noise_limit")
if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or (
self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1
):
raise ValueError("AdvancedBlur supports only odd blur limits.")
if self.sigmaX_limit[0] == 0 and self.sigmaY_limit[0] == 0:
raise ValueError("sigmaX_limit and sigmaY_limit minimum value can not be both equal to 0.")
if not (self.beta_limit[0] < 1.0 < self.beta_limit[1]):
raise ValueError("Beta limit is expected to include 1.0")
@staticmethod
def __check_values(
value: Sequence[float], name: str, bounds: Tuple[float, float] = (0, float("inf"))
) -> Sequence[float]:
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"{name} values should be between {bounds}")
return value
def apply(self, img: np.ndarray, kernel: np.ndarray = np.array(None), **params) -> np.ndarray:
return FMain.convolve(img, kernel=kernel)
def get_params(self) -> Dict[str, np.ndarray]:
ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
sigmaX = random.uniform(*self.sigmaX_limit)
sigmaY = random.uniform(*self.sigmaY_limit)
angle = np.deg2rad(random.uniform(*self.rotate_limit))
# Split into 2 cases to avoid selection of narrow kernels (beta > 1) too often.
if random.random() < 0.5:
beta = random.uniform(self.beta_limit[0], 1)
else:
beta = random.uniform(1, self.beta_limit[1])
noise_matrix = random_utils.uniform(self.noise_limit[0], self.noise_limit[1], size=[ksize, ksize])
# Generate mesh grid centered at zero.
ax = np.arange(-ksize // 2 + 1.0, ksize // 2 + 1.0)
# Shape (ksize, ksize, 2)
grid = np.stack(np.meshgrid(ax, ax), axis=-1)
# Calculate rotated sigma matrix
d_matrix = np.array([[sigmaX**2, 0], [0, sigmaY**2]])
u_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
sigma_matrix = np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
inverse_sigma = np.linalg.inv(sigma_matrix)
# Described in "Parameter Estimation For Multivariate Generalized Gaussian Distributions"
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
# Add noise
kernel = kernel * noise_matrix
# Normalize kernel
kernel = kernel.astype(np.float32) / np.sum(kernel)
return {"kernel": kernel}
def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str]:
return (
"blur_limit",
"sigmaX_limit",
"sigmaY_limit",
"rotate_limit",
"beta_limit",
"noise_limit",
)
class Defocus(ImageOnlyTransform):
"""
Apply defocus transform. See https://arxiv.org/abs/1903.12261.
Args:
radius ((int, int) or int): range for radius of defocusing.
If limit is a single int, the range will be [1, limit]. Default: (3, 10).
alias_blur ((float, float) or float): range for alias_blur of defocusing (sigma of gaussian blur).
If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
radius: ScaleIntType = (3, 10),
alias_blur: ScaleFloatType = (0.1, 0.5),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.radius = to_tuple(radius, low=1)
self.alias_blur = to_tuple(alias_blur, low=0)
if self.radius[0] <= 0:
raise ValueError("Parameter radius must be positive")
if self.alias_blur[0] < 0:
raise ValueError("Parameter alias_blur must be non-negative")
def apply(self, img: np.ndarray, radius: int = 3, alias_blur: float = 0.5, **params) -> np.ndarray:
return F.defocus(img, radius, alias_blur)
def get_params(self) -> Dict[str, Any]:
return {
"radius": random_utils.randint(self.radius[0], self.radius[1] + 1),
"alias_blur": random_utils.uniform(self.alias_blur[0], self.alias_blur[1]),
}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("radius", "alias_blur")
class ZoomBlur(ImageOnlyTransform):
"""
Apply zoom blur transform. See https://arxiv.org/abs/1903.12261.
Args:
max_factor ((float, float) or float): range for max factor for blurring.
If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31).
All max_factor values should be larger than 1.
step_factor ((float, float) or float): If single float will be used as step parameter for np.arange.
If tuple of float step_factor will be in range `[step_factor[0], step_factor[1])`. Default: (0.01, 0.03).
All step_factor values should be positive.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
Any
"""
def __init__(
self,
max_factor: ScaleFloatType = 1.31,
step_factor: ScaleFloatType = (0.01, 0.03),
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.max_factor = to_tuple(max_factor, low=1.0)
self.step_factor = to_tuple(step_factor, step_factor)
if self.max_factor[0] < 1:
raise ValueError("Max factor must be larger or equal 1")
if self.step_factor[0] <= 0:
raise ValueError("Step factor must be positive")
def apply(self, img: np.ndarray, zoom_factors: np.ndarray = np.array(None), **params) -> np.ndarray:
assert zoom_factors is not None
return F.zoom_blur(img, zoom_factors)
def get_params(self) -> Dict[str, Any]:
max_factor = random.uniform(self.max_factor[0], self.max_factor[1])
step_factor = random.uniform(self.step_factor[0], self.step_factor[1])
return {"zoom_factors": np.arange(1.0, max_factor, step_factor)}
def get_transform_init_args_names(self) -> Tuple[str, str]:
return ("max_factor", "step_factor")