MagicDash's picture
Update app.py
3afab17 verified
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
import google.generativeai as genai
from PIL import Image
from werkzeug.utils import secure_filename
import os
import json
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
from typing import List
import textwrap
from IPython.display import display, Markdown
from PIL import Image
import shutil
from werkzeug.utils import secure_filename
import urllib.parse
import re
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import PIL.Image
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
sns.set_theme(color_codes=True)
uploaded_df = None
document_analyzed = False
question_responses = []
def format_text(text):
# Replace **text** with <b>text</b>
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
# Replace any remaining * with <br>
text = text.replace('*', '<br>')
return text
def clean_data(df):
# Step 1: Clean currency-related columns
for col in df.columns:
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
# Step 2: Drop columns with more than 25% missing values
null_percentage = df.isnull().sum() / len(df)
columns_to_drop = null_percentage[null_percentage > 0.25].index
df.drop(columns=columns_to_drop, inplace=True)
# Step 3: Fill missing values for remaining columns
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
# Step 4: Convert object-type columns to lowercase
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
# Step 5: Drop columns with only one unique value
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
df.drop(columns=unique_value_columns, inplace=True)
return df
def clean_data2(df):
for col in df.columns:
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '')
df[col] = df[col].str.replace('£', '')
df[col] = df[col].str.replace('€', '')
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
null_percentage = df.isnull().sum() / len(df)
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
return df
def generate_plot(df, plot_path, plot_type):
df = clean_data(df)
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
if plot_type == 'countplot':
cat_vars = [col for col in df.select_dtypes(include='object').columns
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
for col in cat_vars:
if df[col].nunique() > 10:
top_categories = df[col].value_counts().index[:10]
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
num_cols = len(cat_vars)
num_rows = (num_cols + 1) // 2
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
axs = axs.flatten()
for i, var in enumerate(cat_vars):
category_counts = df[var].value_counts()
top_values = category_counts.index[:10][::-1]
filtered_df = df.copy()
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
axs[i].set_title(var)
axs[i].tick_params(axis='x', rotation=30)
total = len(filtered_df[var])
for p in axs[i].patches:
height = p.get_height()
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
sample_size = filtered_df.shape[0]
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
elif plot_type == 'histplot':
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
if all(word not in col.lower() for word in excluded_words)]
num_cols = len(num_vars)
num_rows = (num_cols + 2) // 3
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
axs = axs.flatten()
plot_index = 0
for i, var in enumerate(num_vars):
if len(df[var].unique()) == len(df):
fig.delaxes(axs[plot_index])
else:
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
axs[plot_index].set_title(var)
axs[plot_index].set_xlabel('')
sample_size = df.shape[0]
plot_index += 1
for i in range(plot_index, len(axs)):
fig.delaxes(axs[i])
fig.tight_layout()
fig.savefig(plot_path)
plt.close(fig)
return plot_path
@app.get("/", response_class=HTMLResponse)
async def read_form(request: Request):
return templates.TemplateResponse("upload.html", {"request": request})
@app.post("/process", response_class=HTMLResponse)
async def process_file(request: Request, file: UploadFile = File(...)):
global df, uploaded_file, document_analyzed, file_path, file_extension
uploaded_file = file
file_location = f"static/{file.filename}"
# Save the uploaded file to the server
with open(file_location, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Load DataFrame based on file type
file_extension = os.path.splitext(file.filename)[1]
if file_extension == '.csv':
file_path = 'dataset.csv'
df = pd.read_csv(file_location, delimiter=",")
df.to_csv(file_path, index=False) # Save as dataset.csv
elif file_extension == '.xlsx':
file_path = 'dataset.xlsx'
df = pd.read_excel(file_location)
df.to_excel(file_path, index=False) # Save as dataset.xlsx
else:
raise HTTPException(status_code=415, detail="Unsupported file format")
# Get columns of the DataFrame
columns = df.columns.tolist()
return templates.TemplateResponse("upload.html", {"request": request, "columns": columns})
@app.post("/result")
async def result(request: Request,
target: str = Form(...),
question: str = Form(...),
algorithm: str = Form(...)):
global df, api
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
api = "AIzaSyBqYpSLeY5lIzo11DQAL20QLG1Slr4MjIU"
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
def generate_gemini_response(plot_path):
genai.configure(api_key=api)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
img = Image.open(plot_path)
response = model.generate_content([question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights.", img])
response.resolve()
return response.text
if df[target].dtype in ['float64', 'int64']:
unique_values = df[target].nunique()
# If unique values > 20, treat it as regression, else classification
if unique_values > 20:
method = "Regression"
else:
method = "Classification"
else:
# If the target is not numeric, treat it as classification
method = "Classification"
# Initialize response3 and plot3_path to None
response3 = None
plot3_path = None
response4 = None
plot4_path = None
response6 = None
plot6_path = None
response8 = None # Initialize response8
plot8_path = None # Initialize plot8_path
response9 = None # Initialize response9
plot9_path = None # Initialize plot9_path
response10 = None # Initialize response8
plot10_path = None # Initialize plot8_path
response11 = None # Initialize response9
plot11_path = None # Initialize plot9_path
if method == "Classification":
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
if all(word not in col.lower() for word in excluded_words)]
# Exclude the target variable from the list if it exists in cat_vars
if target in cat_vars:
cat_vars.remove(target)
# Create a figure with subplots, but only include the required number of subplots
num_cols = len(cat_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a count plot for each categorical variable
for i, var in enumerate(cat_vars):
top_categories = df[var].value_counts().nlargest(5).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
# Replace less frequent categories with "Other" if there are more than 5 unique values
if df[var].nunique() > 5:
other_categories = df[var].value_counts().index[5:]
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i])
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
# Change y-axis label to represent percentage
axs[i].set_ylabel('Percentage')
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any remaining blank subplots
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
plt.xticks(rotation=45)
plt.tight_layout()
plot3_path = "static/multiclass_barplot.png"
plt.savefig(plot3_path)
plt.close(fig)
response3 = format_text(generate_gemini_response(plot3_path))
if method == "Classification":
# Generate Multiclass Pairplot
pairplot_fig = sns.pairplot(df, hue=target)
plot6_path = "static/pair1.png" # Use plot6_path
pairplot_fig.savefig(plot6_path) # Save the pairplot as a PNG file
response6 = format_text(generate_gemini_response(plot6_path))
if method == "Classification":
# Multiclass Histplot
# Get the names of all columns with data type 'object' (categorical columns)
cat_cols = df.columns.tolist()
# Get the names of all columns with data type 'int'
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
int_vars = [col for col in int_vars if col != target]
# Create a figure with subplots
num_cols = len(int_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a histogram for each integer variable with hue='Attrition'
for i, var in enumerate(int_vars):
top_categories = df[var].value_counts().nlargest(10).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent")
axs[i].set_title(var)
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any extra empty subplots if needed
if num_cols < len(axs):
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
# Adjust spacing between subplots
fig.tight_layout()
plt.xticks(rotation=45)
plot4_path = "static/multiclass_histplot.png"
plt.savefig(plot4_path)
plt.close(fig)
response4 = format_text(generate_gemini_response(plot4_path))
import PIL.Image
# Generate Pairplot
pairplot_fig = sns.pairplot(df)
plot5_path = "static/pair2.png"
pairplot_fig.savefig(plot5_path) # Save the pairplot as a PNG file
response5 = format_text(generate_gemini_response(plot5_path))
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
response1 = format_text((generate_gemini_response(plot1_path)))
response2 = format_text((generate_gemini_response(plot2_path)))
from sklearn import preprocessing
for col in df.select_dtypes(include=['object']).columns:
# Initialize a LabelEncoder object
label_encoder = preprocessing.LabelEncoder()
# Fit the encoder to the unique values in the column
label_encoder.fit(df[col].unique())
# Transform the column using the encoder
df[col] = label_encoder.transform(df[col])
# Display Correlation Heatmap
plot7_path = "static/correlation_matrix.png"
fig, ax = plt.subplots(figsize=(30, 24))
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax)
plt.savefig(plot7_path)
plt.close(fig)
img = PIL.Image.open(plot7_path)
response7 = format_text((generate_gemini_response(plot7_path)))
X = df.drop(target, axis=1)
y = df[target]
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0)
from scipy import stats
threshold = 3
for col in X_train.columns:
if X_train[col].nunique() > 20:
# Calculate Z-scores for the column
z_scores = np.abs(stats.zscore(X_train[col]))
# Find and remove outliers based on the threshold
outlier_indices = np.where(z_scores > threshold)[0]
X_train = X_train.drop(X_train.index[outlier_indices])
y_train = y_train.drop(y_train.index[outlier_indices])
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
from sklearn.metrics import mean_absolute_percentage_error
import math
if algorithm == "Decision Tree":
if method == "Regression":
dtree = DecisionTreeRegressor()
param_grid = {
'max_depth': [4, 6, 8],
'min_samples_split': [4, 6, 8],
'min_samples_leaf': [1, 2, 3, 4],
'random_state': [0, 42],
'max_features': ['auto', 'sqrt', 'log2']
}
grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
dtree = DecisionTreeRegressor(**best_params)
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = np.sqrt(mse)
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18)
plot8_path = "static/dtree_regressor.png"
plt.savefig(plot8_path)
img = PIL.Image.open(plot8_path)
response8 = format_text((generate_gemini_response(plot8_path)))
elif method == "Classification":
dtree = DecisionTreeClassifier()
param_grid = {
'max_depth': [3, 4, 5, 6, 7],
'min_samples_split': [2, 3, 4],
'min_samples_leaf': [1, 2, 3],
'random_state': [0, 42]
}
grid_search = GridSearchCV(dtree, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
dtree = DecisionTreeClassifier(**best_params)
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred)
f1 = metrics.f1_score(y_test, y_pred, average='micro')
prec = metrics.precision_score(y_test, y_pred, average='micro')
recall = metrics.recall_score(y_test, y_pred, average='micro')
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18)
plot9_path = "static/dtree_classifier.png"
plt.savefig(plot9_path)
img = PIL.Image.open(plot9_path)
response9 = format_text((generate_gemini_response(plot9_path)))
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
if algorithm == "Random Forest":
if method == "Regression":
rf = RandomForestRegressor()
param_grid = {
'max_depth': [4, 6, 8],
'random_state': [0, 42],
'max_features': ['auto', 'sqrt', 'log2']
}
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
rf = RandomForestRegressor(**best_params)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = np.sqrt(mse)
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": rf.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18)
plot10_path = "static/rf_regressor.png"
plt.savefig(plot10_path)
img = PIL.Image.open(plot10_path)
response10 = format_text((generate_gemini_response(plot10_path)))
elif method == "Classification":
rf = RandomForestClassifier()
param_grid = {
'max_depth': [3, 4, 5, 6],
'random_state': [0, 42]
}
grid_search = GridSearchCV(rf, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
rf = RandomForestClassifier(**best_params)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred)
f1 = metrics.f1_score(y_test, y_pred, average='micro')
prec = metrics.precision_score(y_test, y_pred, average='micro')
recall = metrics.recall_score(y_test, y_pred, average='micro')
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": rf.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18)
plot11_path = "static/rf_classifier.png"
plt.savefig(plot11_path)
img = PIL.Image.open(plot11_path)
response11 = format_text((generate_gemini_response(plot11_path)))
document_analyzed = True
data = {
"request": request,
"response1": response1,
"response2": response2,
"response5": response5,
"response7": response7,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"plot5_path": plot5_path,
"plot7_path": plot7_path,
"show_conversation": document_analyzed,
"question_responses": question_responses
}
# Conditionally include response3 and plot3_path if they exist
if response3:
data["response3"] = response3
if plot3_path:
data["plot3_path"] = plot3_path
if response4:
data["response4"] = response3
if plot4_path:
data["plot4_path"] = plot4_path
if response6:
data["response6"] = response6
if plot6_path:
data["plot6_path"] = plot6_path
if response8:
data["response8"] = response8
if plot8_path:
data["plot8_path"] = plot8_path
if response9:
data["response9"] = response9
if plot9_path:
data["plot9_path"] = plot9_path
if response10:
data["response10"] = response10
if plot10_path:
data["plot10_path"] = plot10_path
if response11:
data["response11"] = response11
if plot11_path:
data["plot11_path"] = plot11_path
return templates.TemplateResponse("upload.html", data)
# Route for asking questions
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
global file_extension, question_responses, api
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
global document_analyzed
# Check if a file has been uploaded
if not file_extension:
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
# Initialize the LLM model
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api)
# Determine the file extension and select the appropriate loader
file_path = ''
loader = None
if file_extension.endswith('.csv'):
file_path = 'dataset.csv'
loader = UnstructuredCSVLoader(file_path, mode="elements")
elif file_extension.endswith('.xlsx'):
file_path = 'dataset.xlsx'
loader = UnstructuredExcelLoader(file_path, mode="elements")
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
# Load and process the document
try:
docs = loader.load()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
# Combine document text
text = "\n".join([doc.page_content for doc in docs])
os.environ["GOOGLE_API_KEY"] = api
# Initialize embeddings and create FAISS vector store
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
document_search = FAISS.from_texts(chunks, embeddings)
# Generate query embedding and perform similarity search
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=3)
if results:
retrieved_texts = " ".join([result.page_content for result in results])
# Define the Summarize Chain for the question
latest_response = "" if not question_responses else question_responses[-1][1]
template1 = (
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "")
)
prompt1 = PromptTemplate.from_template(template1)
# Initialize the LLMChain with the prompt
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
# Invoke the chain to get the summary
try:
response_chain = llm_chain1.invoke({"text": text})
summary1 = response_chain["text"]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
# Generate embeddings for the summary
try:
summary_embedding = embeddings.embed_query(summary1)
document_search = FAISS.from_texts([summary1], embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
# Perform a search on the FAISS vector database
try:
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = format_text(results[0].page_content)
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
else:
current_response = "No relevant results found."
# Append the question and response from FAISS search
current_question = f"You asked: {question}"
question_responses.append((current_question, current_response))
# Save all results to output_summary.json
save_to_json(question_responses)
data = {
"request": request,
"response1": response1,
"response2": response2,
"response5": response5,
"response7": response7,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"plot5_path": plot5_path,
"plot7_path": plot7_path,
"show_conversation": True,
"question_responses": question_responses
}
# Conditionally include response3 and plot3_path if they exist
if response3:
data["response3"] = response3
if plot3_path:
data["plot3_path"] = plot3_path
if response4:
data["response4"] = response3
if plot4_path:
data["plot4_path"] = plot4_path
if response6:
data["response6"] = response6
if plot6_path:
data["plot6_path"] = plot6_path
if response8:
data["response8"] = response8
if plot8_path:
data["plot8_path"] = plot8_path
if response9:
data["response9"] = response9
if plot9_path:
data["plot9_path"] = plot9_path
if response10:
data["response10"] = response10
if plot10_path:
data["plot10_path"] = plot10_path
if response11:
data["response11"] = response11
if plot11_path:
data["plot11_path"] = plot11_path
return templates.TemplateResponse("upload.html", data)
def save_to_json(question_responses):
outputs = {
"question_responses": question_responses
}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)