UniRig / src /model /pointcept /datasets /dataset_render_16views.py
MohamedRashad's picture
Refactor skin weight calculations to handle division by zero and ensure valid index access in Exporter and SAMPart3DDataset classes
27fa9cc
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
from os.path import join
import glob
import numpy as np
import torch
import trimesh
import json
import cv2
import pointops
from copy import deepcopy
from torch.utils.data import Dataset
from collections.abc import Sequence
from transformers import pipeline, SamModel
from PIL import Image
from pointcept.utils.logger import get_root_logger
from pointcept.utils.cache import shared_dict
from .builder import DATASETS
from .transform import Compose, TRANSFORMS
from .sampart3d_util import *
@DATASETS.register_module()
class SAMPart3DDataset16Views(Dataset):
def __init__(
self,
split="train",
data_root="data/scannet",
mesh_root="",
mesh_path_mapping=None,
oid="",
label="",
sample_num=15000,
pixels_per_image=256,
batch_size=90,
transform=None,
loop=1,
extent_scale=10.0
):
super(SAMPart3DDataset16Views, self).__init__()
data_root = os.path.join(data_root, str(oid))
mesh_path = os.path.join(mesh_root, f"{oid}.glb")
self.data_root = data_root
self.split = split
self.pixels_per_image = pixels_per_image
self.batch_size = batch_size
self.device = 'cuda'
self.logger = get_root_logger()
self.extent_scale = extent_scale
self.meta_data = json.load(open(os.path.join(data_root, "meta.json")))
# Load mesh and sample pointclouds
self.mesh_path = mesh_path
transform = Compose(transform)
self.load_mesh(mesh_path, transform, sample_num)
# Prepare SAM masks and depth mapping
if self.split == "train":
self.prepare_meta_data()
self.loop = loop
self.data_list = self.get_data_list()
self.logger.info(
"Totally {} x {} samples in {} set.".format(
len(self.data_list), self.loop, split
)
)
def sample_pixel(self, masks, image_height=512, image_width=512):
masks = masks.to(self.device)
indices_batch = torch.zeros((self.batch_size*self.pixels_per_image, 3), device=self.device)
random_imgs = torch.randint(0, len(masks), (self.batch_size,), device=self.device)
for i in range(self.batch_size):
# Find the indices of the valid points in the mask
valid_indices = torch.nonzero(masks[random_imgs[i]], as_tuple=False)
# if len(valid_indices) == 0:
# continue
# Randomly sample from the valid indices
if len(valid_indices) >= self.pixels_per_image:
indices = valid_indices[torch.randint(0, len(valid_indices), (self.pixels_per_image,))]
else:
# Repeat the indices to fill up to pixels_per_image
repeat_times = self.pixels_per_image // len(valid_indices) + 1
indices = valid_indices.repeat(repeat_times, 1)[:self.pixels_per_image]
indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 0] = random_imgs[i]
indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 1:] = indices
return indices_batch
def load_mesh(self, mesh_path, transform, sample_num=15000, pcd_path=None):
mesh = trimesh.load(mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
coord, face_index, color = sample_surface(mesh, count=sample_num, sample_color=True)
color = color[..., :3]
face_normals = mesh.face_normals
normal = face_normals[face_index]
# self.mesh_scale, self.mesh_center_offset = cal_scale(mesh_path)
mesh_scale = self.meta_data["scaling_factor"]
mesh_center_offset = self.meta_data["mesh_offset"]
object_org_coord = coord.copy()
rotation_matrix = np.array([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
object_org_coord = np.dot(object_org_coord, rotation_matrix)
object_org_coord = object_org_coord * mesh_scale + mesh_center_offset
offset = torch.tensor(coord.shape[0])
obj = dict(coord=coord, normal=normal, color=color, offset=offset, origin_coord=object_org_coord, face_index=face_index)
obj = transform(obj)
self.object_org_coord = obj["origin_coord"].clone()
self.face_index = obj["face_index"].clone().numpy()
self.pcd_inverse = obj["inverse"].clone().numpy()
# print("object_org_coord", torch.unique(self.object_org_coord, return_counts=True))
del obj["origin_coord"], obj["face_index"], obj["inverse"]
self.object = obj
def prepare_meta_data(self, data_path=None):
SAM_model = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device)
pixel_level_keys_list = []
scale_list = []
group_cdf_list = []
depth_valid_list = []
mapping_list = []
mapping_valid_list = []
object_org_coord = self.object_org_coord.to(self.device).contiguous().float()
obj_offset = torch.tensor(object_org_coord.shape[0]).to(self.device)
camera_angle_x = self.meta_data['camera_angle_x']
for i, c2w_opengl in enumerate(self.meta_data["transforms"]):
# print(frame['index'])
c2w_opengl = np.array(c2w_opengl)
self.logger.info(f"Processing frame_{i}")
rgb_path = join(self.data_root, f"render_{i:04d}.webp")
img = np.array(Image.open(rgb_path))
if img.shape[-1] == 4:
mask_img = img[..., 3] == 0
img[mask_img] = [255, 255, 255, 255]
img = img[..., :3]
img = Image.fromarray(img.astype('uint8'))
# Calculate mapping
depth_path = join(self.data_root, f"depth_{i:04d}.exr")
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
depth = depth[..., 0]
depth_valid = torch.tensor(depth < 65500.0)
org_points = gen_pcd(depth, c2w_opengl, camera_angle_x)
org_points = torch.from_numpy(org_points)
points_tensor = org_points.to(self.device).contiguous().float()
offset = torch.tensor(points_tensor.shape[0]).to(self.device)
indices, distances = pointops.knn_query(1, object_org_coord, obj_offset, points_tensor, offset)
mapping = torch.zeros((depth.shape[0], depth.shape[1]), dtype=torch.int) - 1
# Create a mask where distances are less than 0.03
mask_dis = distances[..., 0] < 0.03
indices[~mask_dis] = -1
mapping[depth_valid] = indices.cpu().flatten()
mapping_valid = mapping != -1
# Calculate groups
try:
masks = SAM_model(img, points_per_side=32, pred_iou_thresh=0.9, stability_score_thresh=0.9)
masks = masks['masks']
masks = sorted(masks, key=lambda x: x.sum())
except:
masks = []
# mask filter
masks_filtered = []
img_valid = ~mask_img
for mask in masks:
valid_ratio = mask[img_valid].sum() / img_valid.sum()
invalid_ratio = mask[mask_img].sum() / mask_img.sum()
if valid_ratio == 0 or invalid_ratio > 0.1:
continue
else:
masks_filtered.append(mask)
pixel_level_keys, scale, mask_cdf = self._calculate_3d_groups(torch.from_numpy(depth), mapping_valid, masks_filtered, points_tensor[mask_dis])
pixel_level_keys_list.append(pixel_level_keys)
scale_list.append(scale)
group_cdf_list.append(mask_cdf)
depth_valid_list.append(depth_valid)
mapping_list.append(mapping)
mapping_valid_list.append(mapping_valid)
self.pixel_level_keys = torch.nested.nested_tensor(
pixel_level_keys_list
)
self.scale_3d_statistics = torch.cat(scale_list)
self.scale_3d = torch.nested.nested_tensor(scale_list)
self.group_cdf = torch.nested.nested_tensor(group_cdf_list)
self.depth_valid = torch.stack(depth_valid_list)
self.mapping = torch.stack(mapping_list)
self.mapping_valid = torch.stack(mapping_valid_list)
def _calculate_3d_groups(
self,
depth: torch.Tensor,
valid: torch.Tensor,
masks: torch.Tensor,
point: torch.Tensor,
max_scale: float = 2.0,
):
"""
Calculate the set of groups and their 3D scale for each pixel, and the cdf.
Returns:
- pixel_level_keys: [H, W, max_masks]
- scale: [num_masks, 1]
- mask_cdf: [H, W, max_masks]
max_masks is the maximum number of masks that was assigned to a pixel in the image,
padded with -1s. mask_cdf does *not* include the -1s.
Refer to the main paper for more details.
"""
image_shape = depth.shape[:2]
depth_valid = valid
point = point.to(self.device)
def helper_return_no_masks():
# Fail gracefully when no masks are found.
# Create dummy data (all -1s), which will be ignored later.
# See: `get_loss_dict_group` in `garfield_model.py`
pixel_level_keys = torch.full(
(image_shape[0], image_shape[1], 1), -1, dtype=torch.int
)
scale = torch.Tensor([0.0]).view(-1, 1)
mask_cdf = torch.full(
(image_shape[0], image_shape[1], 1), 1, dtype=torch.float
)
return (pixel_level_keys, scale, mask_cdf)
# If no masks are found, return dummy data.
if len(masks) == 0:
return helper_return_no_masks()
sam_mask = []
scale = []
# For all 2D groups,
# 1) Denoise the masks (through eroding)
all_masks = torch.stack(
# [torch.from_numpy(_["segmentation"]).to(self.device) for _ in masks]
[torch.from_numpy(_).to(self.device) for _ in masks]
)
# erode all masks using 3x3 kernel
# ignore erode
eroded_masks = torch.conv2d(
all_masks.unsqueeze(1).float(),
torch.full((3, 3), 1.0).view(1, 1, 3, 3).to("cuda"),
padding=1,
)
eroded_masks = (eroded_masks >= 5).squeeze(1) # (num_masks, H, W)
# 2) Calculate 3D scale
# Don't include groups with scale > max_scale (likely to be too noisy to be useful)
for i in range(len(masks)):
curr_mask_org = eroded_masks[i]
curr_mask = curr_mask_org[depth_valid]
curr_points = point[curr_mask]
extent = (curr_points.std(dim=0) * self.extent_scale).norm()
if extent.item() < max_scale:
sam_mask.append(curr_mask_org)
scale.append(extent.item())
# If no masks are found, after postprocessing, return dummy data.
if len(sam_mask) == 0:
return helper_return_no_masks()
sam_mask = torch.stack(sam_mask) # (num_masks, H, W)
scale = torch.Tensor(scale).view(-1, 1).to(self.device) # (num_masks, 1)
# Calculate "pixel level keys", which is a 2D array of shape (H, W, max_masks)
# Each pixel has a list of group indices that it belongs to, in order of increasing scale.
pixel_level_keys = self.create_pixel_mask_array(
sam_mask
).long() # (H, W, max_masks)
depth_invalid = ~depth_valid
pixel_level_keys[depth_invalid, :] = -1
# Calculate group sampling CDF, to bias sampling towards smaller groups
# Be careful to not include -1s in the CDF (padding, or unlabeled pixels)
# Inversely proportional to log of mask size.
mask_inds, counts = torch.unique(pixel_level_keys, return_counts=True)
counts[0] = 0 # don't include -1
probs = counts / counts.sum() # [-1, 0, ...]
pixel_shape = pixel_level_keys.shape
if (pixel_level_keys.max()+2) != probs.shape[0]:
pixel_level_keys_new = pixel_level_keys.reshape(-1)
unique_values, inverse_indices = torch.unique(pixel_level_keys_new, return_inverse=True)
pixel_level_keys_new = inverse_indices.reshape(-1)
else:
pixel_level_keys_new = pixel_level_keys.reshape(-1) + 1
mask_probs = torch.gather(probs, 0, pixel_level_keys.reshape(-1) + 1).view(
pixel_shape
)
mask_log_probs = torch.log(mask_probs)
never_masked = mask_log_probs.isinf()
mask_log_probs[never_masked] = 0.0
mask_log_probs = mask_log_probs / (
mask_log_probs.sum(dim=-1, keepdim=True) + 1e-6
)
mask_cdf = torch.cumsum(mask_log_probs, dim=-1)
mask_cdf[never_masked] = 1.0
return (pixel_level_keys.cpu(), scale.cpu(), mask_cdf.cpu())
@staticmethod
def create_pixel_mask_array(masks: torch.Tensor):
"""
Create per-pixel data structure for grouping supervision.
pixel_mask_array[x, y] = [m1, m2, ...] means that pixel (x, y) belongs to masks m1, m2, ...
where Area(m1) < Area(m2) < ... (sorted by area).
"""
max_masks = masks.sum(dim=0).max().item()
# print(max_masks)
image_shape = masks.shape[1:]
pixel_mask_array = torch.full(
(max_masks, image_shape[0], image_shape[1]), -1, dtype=torch.int
).to(masks.device)
for m, mask in enumerate(masks):
mask_clone = mask.clone()
for i in range(max_masks):
free = pixel_mask_array[i] == -1
masked_area = mask_clone == 1
right_index = free & masked_area
if len(pixel_mask_array[i][right_index]) != 0:
pixel_mask_array[i][right_index] = m
mask_clone[right_index] = 0
pixel_mask_array = pixel_mask_array.permute(1, 2, 0)
return pixel_mask_array
def get_data_list(self):
data_list = glob.glob(os.path.join(self.data_root, "*.exr"))
return data_list
def get_data(self, idx):
indices = self.sample_pixel(self.mapping_valid, 512, 512).long().detach().cpu()
npximg = self.pixels_per_image
img_ind = indices[:, 0]
x_ind = indices[:, 1]
y_ind = indices[:, 2]
# sampled_imgs = img_ind[::npximg]
mask_id = torch.zeros((indices.shape[0],), device=self.device)
scale = torch.zeros((indices.shape[0],), device=self.device)
mapping = torch.zeros((indices.shape[0],), device=self.device)
random_vec_sampling = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1)
random_vec_densify = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1)
for i in range(0, indices.shape[0], npximg):
img_idx = img_ind[i]
# calculate mapping
mapping[i : i + npximg] = self.mapping[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]]
# Use `random_vec` to choose a group for each pixel.
per_pixel_index = self.pixel_level_keys[img_idx][
x_ind[i : i + npximg], y_ind[i : i + npximg]
]
random_index = torch.sum(
random_vec_sampling.view(-1, 1)
> self.group_cdf[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]],
dim=-1,
)
# `per_pixel_index` encodes the list of groups that each pixel belongs to.
# If there's only one group, then `per_pixel_index` is a 1D tensor
# -- this will mess up the future `gather` operations.
if per_pixel_index.shape[-1] == 1:
per_pixel_mask = per_pixel_index.squeeze()
else:
# Clamp random_index to valid range to prevent out of bounds error
random_index_clamped = torch.clamp(random_index.unsqueeze(-1), 0, per_pixel_index.shape[1] - 1)
per_pixel_mask = torch.gather(
per_pixel_index, 1, random_index_clamped
).squeeze()
# Clamp the previous index to valid range as well
prev_index_clamped = torch.clamp(random_index.unsqueeze(-1) - 1, 0, per_pixel_index.shape[1] - 1)
per_pixel_mask_ = torch.gather(
per_pixel_index,
1,
prev_index_clamped,
).squeeze()
mask_id[i : i + npximg] = per_pixel_mask.to(self.device)
# interval scale supervision
curr_scale = self.scale_3d[img_idx][per_pixel_mask]
curr_scale[random_index == 0] = (
self.scale_3d[img_idx][per_pixel_mask][random_index == 0]
* random_vec_densify[random_index == 0]
)
for j in range(1, self.group_cdf[img_idx].shape[-1]):
if (random_index == j).sum() == 0:
continue
curr_scale[random_index == j] = (
self.scale_3d[img_idx][per_pixel_mask_][random_index == j]
+ (
self.scale_3d[img_idx][per_pixel_mask][random_index == j]
- self.scale_3d[img_idx][per_pixel_mask_][random_index == j]
)
* random_vec_densify[random_index == j]
)
scale[i : i + npximg] = curr_scale.squeeze().to(self.device)
batch = dict()
batch["mask_id"] = mask_id
batch["scale"] = scale
batch["nPxImg"] = npximg
batch["obj"] = self.object
batch["mapping"] = mapping.long()
return batch
def val_data(self):
return dict(obj=self.object)
def get_data_name(self, idx):
return os.path.basename(self.data_list[idx % len(self.data_list)]).split(".")[0]
def __getitem__(self, idx):
return self.get_data(idx % len(self.data_list))
def __len__(self):
return len(self.data_list) * self.loop