Spaces:
Running
Running
# Copyright 2016 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for DSN losses.""" | |
from functools import partial | |
import numpy as np | |
import tensorflow as tf | |
import losses | |
import utils | |
def MaximumMeanDiscrepancySlow(x, y, sigmas): | |
num_samples = x.get_shape().as_list()[0] | |
def AverageGaussianKernel(x, y, sigmas): | |
result = 0 | |
for sigma in sigmas: | |
dist = tf.reduce_sum(tf.square(x - y)) | |
result += tf.exp((-1.0 / (2.0 * sigma)) * dist) | |
return result / num_samples**2 | |
total = 0 | |
for i in range(num_samples): | |
for j in range(num_samples): | |
total += AverageGaussianKernel(x[i, :], x[j, :], sigmas) | |
total += AverageGaussianKernel(y[i, :], y[j, :], sigmas) | |
total += -2 * AverageGaussianKernel(x[i, :], y[j, :], sigmas) | |
return total | |
class LogQuaternionLossTest(tf.test.TestCase): | |
def test_log_quaternion_loss_batch(self): | |
with self.test_session(): | |
predictions = tf.random_uniform((10, 4), seed=1) | |
predictions = tf.nn.l2_normalize(predictions, 1) | |
labels = tf.random_uniform((10, 4), seed=1) | |
labels = tf.nn.l2_normalize(labels, 1) | |
params = {'batch_size': 10, 'use_logging': False} | |
x = losses.log_quaternion_loss_batch(predictions, labels, params) | |
self.assertTrue(((10,) == tf.shape(x).eval()).all()) | |
class MaximumMeanDiscrepancyTest(tf.test.TestCase): | |
def test_mmd_name(self): | |
with self.test_session(): | |
x = tf.random_uniform((2, 3), seed=1) | |
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) | |
loss = losses.maximum_mean_discrepancy(x, x, kernel) | |
self.assertEquals(loss.op.name, 'MaximumMeanDiscrepancy/value') | |
def test_mmd_is_zero_when_inputs_are_same(self): | |
with self.test_session(): | |
x = tf.random_uniform((2, 3), seed=1) | |
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) | |
self.assertEquals(0, losses.maximum_mean_discrepancy(x, x, kernel).eval()) | |
def test_fast_mmd_is_similar_to_slow_mmd(self): | |
with self.test_session(): | |
x = tf.constant(np.random.normal(size=(2, 3)), tf.float32) | |
y = tf.constant(np.random.rand(2, 3), tf.float32) | |
cost_old = MaximumMeanDiscrepancySlow(x, y, [1.]).eval() | |
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) | |
cost_new = losses.maximum_mean_discrepancy(x, y, kernel).eval() | |
self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) | |
def test_multiple_sigmas(self): | |
with self.test_session(): | |
x = tf.constant(np.random.normal(size=(2, 3)), tf.float32) | |
y = tf.constant(np.random.rand(2, 3), tf.float32) | |
sigmas = tf.constant([2., 5., 10, 20, 30]) | |
kernel = partial(utils.gaussian_kernel_matrix, sigmas=sigmas) | |
cost_old = MaximumMeanDiscrepancySlow(x, y, [2., 5., 10, 20, 30]).eval() | |
cost_new = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval() | |
self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) | |
def test_mmd_is_zero_when_distributions_are_same(self): | |
with self.test_session(): | |
x = tf.random_uniform((1000, 10), seed=1) | |
y = tf.random_uniform((1000, 10), seed=3) | |
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([100.])) | |
loss = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval() | |
self.assertAlmostEqual(0, loss, delta=1e-4) | |
if __name__ == '__main__': | |
tf.test.main() | |