File size: 5,289 Bytes
53bee95
 
 
 
 
3200fc7
53bee95
 
 
3200fc7
53bee95
3200fc7
 
 
 
 
53bee95
 
 
 
3200fc7
53bee95
3200fc7
53bee95
 
 
 
3200fc7
53bee95
 
3200fc7
53bee95
3200fc7
 
 
53bee95
3200fc7
53bee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200fc7
53bee95
 
3200fc7
53bee95
 
 
 
6b94d5d
53bee95
 
 
 
 
 
3200fc7
53bee95
 
 
 
 
 
 
 
 
 
 
 
3200fc7
53bee95
 
 
 
 
 
 
 
 
 
 
3200fc7
c6b3050
 
 
 
53af52f
 
c6b3050
53af52f
 
 
 
 
c6b3050
 
 
 
 
 
53af52f
c6b3050
 
 
 
 
 
 
53af52f
c6b3050
 
 
 
 
 
 
53af52f
c6b3050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200fc7
53bee95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import pickle
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
import easyocr
import torch

# ========== GPU Checks ==========
print("Torch GPU Available:", torch.cuda.is_available())
print("TensorFlow GPU Devices:", tf.config.list_physical_devices('GPU'))

# ========== Load Model and Label Encoder ==========
model_path = "MobileNetBest_Model.h5"
label_path = "MobileNet_Label_Encoder.pkl"

model = load_model(model_path)
print("βœ… MobileNet model loaded.")

# Label encoder
try:
    with open(label_path, 'rb') as f:
        label_map = pickle.load(f)
        index_to_label = {v: k for k, v in label_map.items()}
    print("βœ… Label encoder loaded:", index_to_label)
except:
    index_to_label = {0: "Handwritten", 1: "Computerized"}
    print("⚠️ Default labels used:", index_to_label)

# ========== Initialize EasyOCR (Force GPU) ==========
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
print("βœ… EasyOCR initialized with GPU:", torch.cuda.is_available())

# ========== Classify One Region ==========
def classify_text_region(region_img):
    try:
        region_img = cv2.resize(region_img, (224, 224))
        region_img = region_img.astype("float32") / 255.0
        region_img = img_to_array(region_img)
        region_img = np.expand_dims(region_img, axis=0)

        preds = model.predict(region_img)

        if preds.shape[-1] == 1:
            return "Computerized" if preds[0][0] > 0.5 else "Handwritten"
        else:
            class_idx = np.argmax(preds[0])
            return index_to_label.get(class_idx, "Unknown")
    except Exception as e:
        print("❌ Classification error:", e)
        return "Unknown"

# ========== OCR & Annotate ==========
def AnnotatedTextDetection_EasyOCR_from_array(img):
    results = reader.readtext(img)
    annotated_results = []

    for (bbox, text, conf) in results:
        if conf < 0.3 or text.strip() == "":
            continue

        x1, y1 = map(int, bbox[0])
        x2, y2 = map(int, bbox[2])
        crop = img[y1:y2, x1:x2]

        if crop.size == 0:
            continue

        label = classify_text_region(crop)
        annotated_results.append(f"{text.strip()} β†’ {label}")

        color = (0, 255, 0) if label == "Computerized" else (255, 0, 0)
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
        cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)

    return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)

# ========== Inference Function ==========
def infer(image):
    img = np.array(image)

    max_dim = 1000
    if img.shape[0] > max_dim or img.shape[1] > max_dim:
        scale = max_dim / max(img.shape[0], img.shape[1])
        img = cv2.resize(img, (int(img.shape[1]*scale), int(img.shape[0]*scale)))

    annotated_img, result_text = AnnotatedTextDetection_EasyOCR_from_array(img)
    return Image.fromarray(annotated_img), result_text

# ========== Gradio UI ==========
with gr.Blocks(
    title="Text Type Classifier",
    css="""
        body {
            background-color: white !important;
            color: red !important;
        }

        h1, h2, h3, h4, h5, h6, label, .gr-box, .gr-button {
            color: red !important;
        }

        .outer-box {
            border: 8px solid black;
            border-radius: 16px;
            padding: 24px;
            background-color: white;
        }

        .gr-box {
            border: 6px solid #0288d1 !important;
            border-radius: 12px;
            padding: 16px;
            background-color: white;
            box-shadow: 0px 2px 10px rgba(0,0,0,0.1);
        }

        .gr-button {
            background-color: #0288d1 !important;
            color: white !important;
            font-weight: bold;
            border-radius: 8px;
            margin-top: 10px;
        }

        .gr-button:hover {
            background-color: #01579b !important;
        }
    """
) as demo:

    with gr.Column(elem_classes=["outer-box"]):

        gr.Markdown(
            """
            <div style="text-align: center;">
                <h1><strong>Handwritten vs Computerized Text Classifier</strong></h1>
            </div>
            """,
            elem_classes=["gr-box"]
        )

        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Upload Image", type="numpy", elem_classes=["gr-box"])
                submit_btn = gr.Button("Process Image", elem_classes=["gr-box", "gr-button"])
                clear_btn = gr.Button("Clear", elem_classes=["gr-box", "gr-button"])

            with gr.Column():
                image_output = gr.Image(label="Annotated Output", type="numpy", elem_classes=["gr-box"])
                text_output = gr.Textbox(label="Detected Results", lines=10, elem_classes=["gr-box"])

        submit_btn.click(
            fn=infer,
            inputs=image_input,
            outputs=[image_output, text_output]
        )

        clear_btn.click(
            fn=lambda: (None, None, ""),
            inputs=[],
            outputs=[image_input, image_output, text_output]
        )

demo.launch()