Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration | |
import torch | |
import librosa | |
import datasets | |
from transformers.pipelines.pt_utils import KeyDataset | |
from tqdm.auto import tqdm | |
transcriber = pipeline(model="openai/whisper-large-v2",device_map="auto") | |
# checkpoint = "/innev/open-ai/huggingface/openai/whisper-base" | |
image_to_text_model = pipeline("image-classification") | |
text_to_audio_model = pipeline("text-to-speech") | |
pipe_audio = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0) | |
dataset = datasets.load_dataset("superb", name="asr", split="test") | |
for out in tqdm(pipe(KeyDataset(dataset, "file"))): | |
print(out) | |
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} | |
# {"text": ....} | |
# .... | |
def image_to_text(input_image): | |
# Convertir la imagen a texto | |
text_output = image_to_text_model(input_image)[0]['label'] | |
print(text_output) | |
#texts = transcriber(text_output) | |
return text_output | |
#with gr.Blocks() as demo: | |
# gr.Markdown("Start typing below and then click **Run** to see the output.") | |
# with gr.Row(): | |
# inp = gr.Image() | |
# out = gr.Textbox(placeholder=image_to_text(inp)) | |
# gr.Interface(fn=image_to_text, inputs=inp, outputs=out,interpretation="default") | |
#demo.launch() |