PDF-Data_Extractor / src /adapters /ml /fast_trainer_adapter.py
Wasim
Sync: robust vehicle parser + full project
2e237ce
from os.path import join
from domain.PdfImages import PdfImages
from domain.PdfSegment import PdfSegment
from ports.services.ml_model_service import MLModelService
from adapters.ml.fast_trainer.ParagraphExtractorTrainer import ParagraphExtractorTrainer
from adapters.ml.fast_trainer.model_configuration import MODEL_CONFIGURATION as PARAGRAPH_EXTRACTION_CONFIGURATION
from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer
from adapters.ml.pdf_tokens_type_trainer.ModelConfiguration import ModelConfiguration
from configuration import ROOT_PATH, service_logger
class FastTrainerAdapter(MLModelService):
def predict_document_layout(self, pdf_images: list[PdfImages]) -> list[PdfSegment]:
return self.predict_layout_fast(pdf_images)
def predict_layout_fast(self, pdf_images: list[PdfImages]) -> list[PdfSegment]:
service_logger.info("Creating Paragraph Tokens [fast]")
pdf_images_obj = pdf_images[0]
token_type_trainer = TokenTypeTrainer([pdf_images_obj.pdf_features], ModelConfiguration())
token_type_trainer.set_token_types(join(ROOT_PATH, "models", "token_type_lightgbm.model"))
trainer = ParagraphExtractorTrainer(
pdfs_features=[pdf_images_obj.pdf_features], model_configuration=PARAGRAPH_EXTRACTION_CONFIGURATION
)
segments = trainer.get_pdf_segments(join(ROOT_PATH, "models", "paragraph_extraction_lightgbm.model"))
pdf_images_obj.remove_images()
return segments