Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
import tiktoken | |
from dataclasses import dataclass | |
import torch.nn as nn | |
import math | |
import inspect | |
import spaces | |
# Configuration class (same as in training) | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50257 | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
# Model architecture classes (copied from training notebook) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.c_proj.NANGPT_SCALE_INIT = 1 | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.gradient_checkpointing = True | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, 'NANGPT_SCALE_INIT'): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.size() | |
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) | |
pos_emb = self.transformer.wpe(pos) | |
tok_emb = self.transformer.wte(idx) | |
x = tok_emb + pos_emb | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) | |
return logits, None if targets is None else F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
# Initialize model and load weights | |
def load_model(): | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = GPT(GPTConfig()) | |
# Load the state dict with weights_only=True and remove the _orig_mod prefix | |
state_dict = torch.load('nano_gpt_model.pt', map_location=device, weights_only=True) | |
new_state_dict = {} | |
for key in state_dict.keys(): | |
new_key = key.replace('_orig_mod.', '') | |
new_state_dict[new_key] = state_dict[key] | |
model.load_state_dict(new_state_dict) | |
model.to(device) | |
model.eval() | |
return model, device | |
# Text generation function | |
def generate_text(prompt, num_tokens, temperature=0.8): | |
enc = tiktoken.get_encoding('gpt2') | |
x = torch.tensor([enc.encode(prompt)], dtype=torch.long, device=device) | |
with torch.no_grad(): | |
while x.size(1) < num_tokens: | |
with torch.autocast(device_type=device, dtype=torch.bfloat16): | |
logits = model(x)[0] | |
logits = logits[:, -1, :] / temperature | |
probs = F.softmax(logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
x = torch.cat([x, next_token], dim=1) | |
decoded = enc.decode(x[0].tolist()) | |
return decoded | |
# Load the model globally | |
model, device = load_model() | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Enter your prompt", value="Thou shalt"), | |
gr.Slider(minimum=1, maximum=1024, value=100, step=1, label="Number of tokens to generate"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature (higher = more random)") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="GPT Text Generator", | |
description="Generate Shakespeare-style text using a trained GPT model", | |
allow_flagging="never", | |
cache_examples=True | |
) | |
if __name__ == "__main__": | |
demo.launch() |