Zvo / zipvoice /utils /common.py
hynt's picture
update zipvoice demo
6f024ab
import argparse
import collections
import json
import logging
import os
import socket
import subprocess
import sys
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
import torch
from torch import distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
Pathlike = Union[str, Path]
class AttributeDict(dict):
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError(f"No such attribute '{key}'")
def __setattr__(self, key, value):
self[key] = value
def __delattr__(self, key):
if key in self:
del self[key]
return
raise AttributeError(f"No such attribute '{key}'")
def __str__(self, indent: int = 2):
tmp = {}
for k, v in self.items():
# PosixPath is ont JSON serializable
if isinstance(v, (Path, torch.device, torch.dtype)):
v = str(v)
tmp[k] = v
return json.dumps(tmp, indent=indent, sort_keys=True)
class MetricsTracker(collections.defaultdict):
def __init__(self):
# Passing the type 'int' to the base-class constructor
# makes undefined items default to int() which is zero.
# This class will play a role as metrics tracker.
# It can record many metrics, including but not limited to loss.
super(MetricsTracker, self).__init__(int)
def __add__(self, other: "MetricsTracker") -> "MetricsTracker":
ans = MetricsTracker()
for k, v in self.items():
ans[k] = v
for k, v in other.items():
ans[k] = ans[k] + v
return ans
def __mul__(self, alpha: float) -> "MetricsTracker":
ans = MetricsTracker()
for k, v in self.items():
ans[k] = v * alpha
return ans
def __str__(self) -> str:
ans_frames = ""
ans_utterances = ""
for k, v in self.norm_items():
norm_value = "%.4g" % v
if "utt_" not in k:
ans_frames += str(k) + "=" + str(norm_value) + ", "
else:
ans_utterances += str(k) + "=" + str(norm_value)
if k == "utt_duration":
ans_utterances += " frames, "
elif k == "utt_pad_proportion":
ans_utterances += ", "
else:
raise ValueError(f"Unexpected key: {k}")
frames = "%.2f" % self["frames"]
ans_frames += "over " + str(frames) + " frames. "
if ans_utterances != "":
utterances = "%.2f" % self["utterances"]
ans_utterances += "over " + str(utterances) + " utterances."
return ans_frames + ans_utterances
def norm_items(self) -> List[Tuple[str, float]]:
"""
Returns a list of pairs, like:
[('ctc_loss', 0.1), ('att_loss', 0.07)]
"""
num_frames = self["frames"] if "frames" in self else 1
num_utterances = self["utterances"] if "utterances" in self else 1
ans = []
for k, v in self.items():
if k == "frames" or k == "utterances":
continue
norm_value = (
float(v) / num_frames if "utt_" not in k else float(v) / num_utterances
)
ans.append((k, norm_value))
return ans
def reduce(self, device):
"""
Reduce using torch.distributed, which I believe ensures that
all processes get the total.
"""
keys = sorted(self.keys())
s = torch.tensor([float(self[k]) for k in keys], device=device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
for k, v in zip(keys, s.cpu().tolist()):
self[k] = v
def write_summary(
self,
tb_writer: SummaryWriter,
prefix: str,
batch_idx: int,
) -> None:
"""Add logging information to a TensorBoard writer.
Args:
tb_writer: a TensorBoard writer
prefix: a prefix for the name of the loss, e.g. "train/valid_",
or "train/current_"
batch_idx: The current batch index, used as the x-axis of the plot.
"""
for k, v in self.norm_items():
tb_writer.add_scalar(prefix + k, v, batch_idx)
def setup_dist(
rank=None,
world_size=None,
master_port=None,
use_ddp_launch=False,
master_addr=None,
):
"""
rank and world_size are used only if use_ddp_launch is False.
"""
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = (
"localhost" if master_addr is None else str(master_addr)
)
if "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "12354" if master_port is None else str(master_port)
if use_ddp_launch is False:
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
else:
dist.init_process_group("nccl")
def cleanup_dist():
dist.destroy_process_group()
def prepare_input(
params: AttributeDict,
batch: dict,
device: torch.device,
return_tokens: bool = True,
return_feature: bool = True,
return_audio: bool = False,
):
"""
Parse the features and targets of the current batch.
Args:
params:
It is returned by :func:`get_params`.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
device:
The device of Tensor.
"""
return_list = []
if return_tokens:
return_list += [batch["tokens"]]
if return_feature:
features = batch["features"].to(device)
features_lens = batch["features_lens"].to(device)
return_list += [features * params.feat_scale, features_lens]
if return_audio:
return_list += [batch["audio"], batch["audio_lens"]]
return return_list
def prepare_avg_tokens_durations(features_lens, tokens_lens):
tokens_durations = []
for i in range(len(features_lens)):
utt_duration = features_lens[i]
avg_token_duration = utt_duration // tokens_lens[i]
tokens_durations.append([avg_token_duration] * tokens_lens[i])
return tokens_durations
def pad_labels(y: List[List[int]], pad_id: int, device: torch.device):
"""
Pad the transcripts to the same length with zeros.
Args:
y: the transcripts, which is a list of a list
Returns:
Return a Tensor of padded transcripts.
"""
y = [token_ids + [pad_id] for token_ids in y]
length = max([len(token_ids) for token_ids in y])
y = [token_ids + [pad_id] * (length - len(token_ids)) for token_ids in y]
return torch.tensor(y, dtype=torch.int64, device=device)
def get_tokens_index(durations: List[List[int]], num_frames: int) -> torch.Tensor:
"""
Gets position in the transcript for each frame, i.e. the position
in the symbol-sequence to look up.
Args:
durations:
Duration of each token in transcripts.
num_frames:
The maximum frame length of the current batch.
Returns:
Return a Tensor of shape (batch_size, num_frames)
"""
durations = [x + [num_frames - sum(x)] for x in durations]
batch_size = len(durations)
ans = torch.zeros(batch_size, num_frames, dtype=torch.int64)
for b in range(batch_size):
this_dur = durations[b]
cur_frame = 0
for i, d in enumerate(this_dur):
ans[b, cur_frame : cur_frame + d] = i
cur_frame += d
assert cur_frame == num_frames, (cur_frame, num_frames)
return ans
def to_int_tuple(s: Union[str, int]):
if isinstance(s, int):
return (s,)
return tuple(map(int, s.split(",")))
def get_adjusted_batch_count(params: AttributeDict) -> float:
# returns the number of batches we would have used so far if we had used the
# reference duration. This is for purposes of set_batch_count().
return (
params.batch_idx_train
* (params.max_duration * params.world_size)
/ params.ref_duration
)
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
if isinstance(model, DDP):
# get underlying nn.Module
model = model.module
for name, module in model.named_modules():
if hasattr(module, "batch_count"):
module.batch_count = batch_count
if hasattr(module, "name"):
module.name = name
def condition_time_mask(
features_lens: torch.Tensor,
mask_percent: Tuple[float, float],
max_len: int = 0,
) -> torch.Tensor:
"""
Apply Time masking.
Args:
features_lens:
input tensor of shape ``(B)``
mask_size:
the width size for masking.
max_len:
the maximum length of the mask.
Returns:
Return a 2-D bool tensor (B, T), where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
"""
mask_size = (
torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent)
* features_lens
).to(torch.int64)
mask_starts = (
torch.rand_like(mask_size, dtype=torch.float32) * (features_lens - mask_size)
).to(torch.int64)
mask_ends = mask_starts + mask_size
max_len = max(max_len, features_lens.max())
seq_range = torch.arange(0, max_len, device=features_lens.device)
mask = (seq_range[None, :] >= mask_starts[:, None]) & (
seq_range[None, :] < mask_ends[:, None]
)
return mask
def condition_time_mask_suffix(
features_lens: torch.Tensor,
mask_percent: Tuple[float, float],
max_len: int = 0,
) -> torch.Tensor:
"""
Apply Time masking, mask from the end time index.
Args:
features_lens:
input tensor of shape ``(B)``
mask_size:
the width size for masking.
max_len:
the maximum length of the mask.
Returns:
Return a 2-D bool tensor (B, T), where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
"""
mask_size = (
torch.zeros_like(features_lens, dtype=torch.float32).uniform_(*mask_percent)
* features_lens
).to(torch.int64)
mask_starts = (
torch.ones_like(mask_size, dtype=torch.float32) * (features_lens - mask_size)
).to(torch.int64)
mask_ends = mask_starts + mask_size
max_len = max(max_len, features_lens.max())
seq_range = torch.arange(0, max_len, device=features_lens.device)
mask = (seq_range[None, :] >= mask_starts[:, None]) & (
seq_range[None, :] < mask_ends[:, None]
)
return mask
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
def str2bool(v):
"""Used in argparse.ArgumentParser.add_argument to indicate
that a type is a bool type and user can enter
- yes, true, t, y, 1, to represent True
- no, false, f, n, 0, to represent False
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def setup_logger(
log_filename: Pathlike,
log_level: str = "info",
use_console: bool = True,
) -> None:
"""Setup log level.
Args:
log_filename:
The filename to save the log.
log_level:
The log level to use, e.g., "debug", "info", "warning", "error",
"critical"
use_console:
True to also print logs to console.
"""
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
if dist.is_available() and dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s" # noqa
log_filename = f"{log_filename}-{date_time}-{rank}"
else:
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
log_filename = f"{log_filename}-{date_time}"
os.makedirs(os.path.dirname(log_filename), exist_ok=True)
level = logging.ERROR
if log_level == "debug":
level = logging.DEBUG
elif log_level == "info":
level = logging.INFO
elif log_level == "warning":
level = logging.WARNING
elif log_level == "critical":
level = logging.CRITICAL
logging.basicConfig(
filename=log_filename,
format=formatter,
level=level,
filemode="w",
force=True,
)
if use_console:
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)
def get_git_sha1():
try:
git_commit = (
subprocess.run(
["git", "rev-parse", "--short", "HEAD"],
check=True,
stdout=subprocess.PIPE,
)
.stdout.decode()
.rstrip("\n")
.strip()
)
dirty_commit = (
len(
subprocess.run(
["git", "diff", "--shortstat"],
check=True,
stdout=subprocess.PIPE,
)
.stdout.decode()
.rstrip("\n")
.strip()
)
> 0
)
git_commit = git_commit + "-dirty" if dirty_commit else git_commit + "-clean"
except: # noqa
return None
return git_commit
def get_git_date():
try:
git_date = (
subprocess.run(
["git", "log", "-1", "--format=%ad", "--date=local"],
check=True,
stdout=subprocess.PIPE,
)
.stdout.decode()
.rstrip("\n")
.strip()
)
except: # noqa
return None
return git_date
def get_git_branch_name():
try:
git_date = (
subprocess.run(
["git", "rev-parse", "--abbrev-ref", "HEAD"],
check=True,
stdout=subprocess.PIPE,
)
.stdout.decode()
.rstrip("\n")
.strip()
)
except: # noqa
return None
return git_date
def get_env_info() -> Dict[str, Any]:
"""Get the environment information."""
return {
"torch-version": str(torch.__version__),
"torch-cuda-available": torch.cuda.is_available(),
"torch-cuda-version": torch.version.cuda,
"python-version": sys.version[:4],
"zipvoice-git-branch": get_git_branch_name(),
"zipvoice-git-sha1": get_git_sha1(),
"zipvoice-git-date": get_git_date(),
"zipvoice-path": str(Path(__file__).resolve().parent.parent),
"hostname": socket.gethostname(),
"IP address": socket.gethostbyname(socket.gethostname()),
}
def get_parameter_groups_with_lrs(
model: nn.Module,
lr: float,
include_names: bool = False,
freeze_modules: List[str] = [],
) -> List[dict]:
"""
This is for use with the ScaledAdam optimizers (more recent versions that accept
lists of named-parameters; we can, if needed, create a version without the names).
It provides a way to specify learning-rate scales inside the module, so that if
any nn.Module in the hierarchy has a floating-point parameter 'lr_scale', it will
scale the LR of any parameters inside that module or its submodules. Note: you
can set module parameters outside the __init__ function, e.g.:
>>> a = nn.Linear(10, 10)
>>> a.lr_scale = 0.5
Returns: a list of dicts, of the following form:
if include_names == False:
[ { 'params': [ tensor1, tensor2, ... ], 'lr': 0.01 },
{ 'params': [ tensor3, tensor4, ... ], 'lr': 0.005 },
... ]
if include_names == true:
[ { 'named_params': [ (name1, tensor1, (name2, tensor2), ... ], 'lr': 0.01 },
{ 'named_params': [ (name3, tensor3), (name4, tensor4), ... ], 'lr': 0.005 },
... ]
"""
# flat_lr_scale just contains the lr_scale explicitly specified
# for each prefix of the name, e.g. 'encoder.layers.3', these need
# to be multiplied for all prefix of the name of any given parameter.
flat_lr_scale = defaultdict(lambda: 1.0)
names = []
for name, m in model.named_modules():
names.append(name)
if hasattr(m, "lr_scale"):
flat_lr_scale[name] = m.lr_scale
# lr_to_parames is a dict from learning rate (floating point) to: if
# include_names == true, a list of (name, parameter) for that learning rate;
# otherwise a list of parameters for that learning rate.
lr_to_params = defaultdict(list)
for name, parameter in model.named_parameters():
split_name = name.split(".")
# caution: as a special case, if the name is '', split_name will be [ '' ].
prefix = split_name[0]
if prefix == "module": # DDP
module_name = split_name[1]
if module_name in freeze_modules:
logging.info(f"Remove {name} from parameters")
continue
else:
if prefix in freeze_modules:
logging.info(f"Remove {name} from parameters")
continue
cur_lr = lr * flat_lr_scale[prefix]
if prefix != "":
cur_lr *= flat_lr_scale[""]
for part in split_name[1:]:
prefix = ".".join([prefix, part])
cur_lr *= flat_lr_scale[prefix]
lr_to_params[cur_lr].append((name, parameter) if include_names else parameter)
if include_names:
return [{"named_params": pairs, "lr": lr} for lr, pairs in lr_to_params.items()]
else:
return [{"params": params, "lr": lr} for lr, params in lr_to_params.items()]