Spaces:
Running
Running
Joseph Pollack
improves demo for automatic deployment and interface linking to deployment scripts
a595d5a
unverified
language: | |
- en | |
- fr | |
license: apache-2.0 | |
library_name: transformers | |
tags: | |
- voxtral | |
- fine-tuned | |
- text-generation | |
- tonic | |
{{#if quantized_models}}- quantized{{/if}} | |
pipeline_tag: text-generation | |
base_model: {{base_model}} | |
{{#if dataset_name}} | |
datasets: | |
- {{dataset_name}} | |
{{/if}} | |
{{#if quantized_models}} | |
model-index: | |
- name: {{model_name}} | |
results: | |
- task: | |
type: text-generation | |
dataset: | |
name: {{dataset_name}} | |
type: {{dataset_name}} | |
metrics: | |
- name: Training Loss | |
type: loss | |
value: "{{training_loss|default:'N/A'}}" | |
- name: Validation Loss | |
type: loss | |
value: "{{validation_loss|default:'N/A'}}" | |
- name: Perplexity | |
type: perplexity | |
value: "{{perplexity|default:'N/A'}}" | |
- name: {{model_name}} (int8 quantized) | |
results: | |
- task: | |
type: text-generation | |
dataset: | |
name: {{dataset_name}} | |
type: {{dataset_name}} | |
metrics: | |
- name: Memory Reduction | |
type: memory_efficiency | |
value: "~50%" | |
- name: Inference Speed | |
type: speed | |
value: "Faster" | |
- name: {{model_name}} (int4 quantized) | |
results: | |
- task: | |
type: text-generation | |
dataset: | |
name: {{dataset_name}} | |
type: {{dataset_name}} | |
metrics: | |
- name: Memory Reduction | |
type: memory_efficiency | |
value: "~75%" | |
- name: Inference Speed | |
type: speed | |
value: "Significantly Faster" | |
{{else}} | |
model-index: | |
- name: {{model_name}} | |
results: | |
- task: | |
type: text-generation | |
dataset: | |
name: {{dataset_name}} | |
type: {{dataset_name}} | |
metrics: | |
- name: Training Loss | |
type: loss | |
value: "{{training_loss|default:'N/A'}}" | |
- name: Validation Loss | |
type: loss | |
value: "{{validation_loss|default:'N/A'}}" | |
- name: Perplexity | |
type: perplexity | |
value: "{{perplexity|default:'N/A'}}" | |
{{/if}} | |
{{#if author_name}} | |
author: {{author_name}} | |
{{/if}} | |
{{#if experiment_name}} | |
experiment_name: {{experiment_name}} | |
{{/if}} | |
{{#if trackio_url}} | |
trackio_url: {{trackio_url}} | |
{{/if}} | |
{{#if dataset_repo}} | |
dataset_repo: {{dataset_repo}} | |
{{/if}} | |
{{#if hardware_info}} | |
hardware: "{{hardware_info}}" | |
{{/if}} | |
{{#if training_config_type}} | |
training_config: {{training_config_type}} | |
{{/if}} | |
{{#if trainer_type}} | |
trainer_type: {{trainer_type}} | |
{{/if}} | |
{{#if batch_size}} | |
batch_size: {{batch_size}} | |
{{/if}} | |
{{#if learning_rate}} | |
learning_rate: {{learning_rate}} | |
{{/if}} | |
{{#if max_epochs}} | |
max_epochs: {{max_epochs}} | |
{{/if}} | |
{{#if max_seq_length}} | |
max_seq_length: {{max_seq_length}} | |
{{/if}} | |
{{#if dataset_sample_size}} | |
dataset_sample_size: {{dataset_sample_size}} | |
{{/if}} | |
{{#if dataset_size}} | |
dataset_size: {{dataset_size}} | |
{{/if}} | |
{{#if dataset_format}} | |
dataset_format: {{dataset_format}} | |
{{/if}} | |
{{#if gradient_accumulation_steps}} | |
gradient_accumulation_steps: {{gradient_accumulation_steps}} | |
{{/if}} | |
# {{model_name}} | |
{{model_description}} | |
## Model Details | |
- **Base Model**: SmolLM3-3B | |
- **Model Type**: Causal Language Model | |
- **Languages**: English, French | |
- **License**: Apache 2.0 | |
- **Fine-tuned**: Yes | |
{{#if quantized_models}} | |
- **Quantized Versions**: Available in subdirectories | |
{{/if}} | |
## Usage | |
### Main Model | |
```python | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the main model | |
model = AutoModelForCausalLM.from_pretrained( | |
"{{repo_name}}", | |
device_map="auto", | |
torch_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained("{{repo_name}}") | |
# Generate text | |
input_text = "What are we having for dinner?" | |
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) | |
output = model.generate(**input_ids, max_new_tokens=50) | |
print(tokenizer.decode(output[0], skip_special_tokens=True)) | |
``` | |
## Training Information | |
### Training Configuration | |
- **Base Model**: {{base_model}} | |
- **Dataset**: {{dataset_name}} | |
- **Training Config**: {{training_config_type}} | |
- **Trainer Type**: {{trainer_type}} | |
{{#if dataset_sample_size}} | |
- **Dataset Sample Size**: {{dataset_sample_size}} | |
{{/if}} | |
### Training Parameters | |
- **Batch Size**: {{batch_size}} | |
- **Gradient Accumulation**: {{gradient_accumulation_steps}} | |
- **Learning Rate**: {{learning_rate}} | |
- **Max Epochs**: {{max_epochs}} | |
- **Sequence Length**: {{max_seq_length}} | |
### Training Infrastructure | |
- **Hardware**: {{hardware_info}} | |
- **Monitoring**: Trackio integration | |
- **Experiment**: {{experiment_name}} | |
## Model Architecture | |
This is a fine-tuned version of the SmolLM3-3B model with the following specifications: | |
- **Base Model**: SmolLM3-3B | |
- **Parameters**: ~3B | |
- **Context Length**: {{max_seq_length}} | |
- **Languages**: English, French | |
- **Architecture**: Transformer-based causal language model | |
## Performance | |
The model provides: | |
- **Text Generation**: High-quality text generation capabilities | |
- **Conversation**: Natural conversation abilities | |
- **Multilingual**: Support for English and French | |
{{#if quantized_models}} | |
- **Quantized Versions**: Optimized for different deployment scenarios | |
{{/if}} | |
## Limitations | |
1. **Context Length**: Limited by the model's maximum sequence length | |
2. **Bias**: May inherit biases from the training data | |
3. **Factual Accuracy**: May generate incorrect or outdated information | |
4. **Safety**: Should be used responsibly with appropriate safeguards | |
{{#if quantized_models}} | |
5. **Quantization**: Quantized versions may have slightly reduced accuracy | |
{{/if}} | |
## Training Data | |
The model was fine-tuned on: | |
- **Dataset**: {{dataset_name}} | |
- **Size**: {{dataset_size}} | |
- **Format**: {{dataset_format}} | |
- **Languages**: English, French | |
## Evaluation | |
The model was evaluated using: | |
- **Metrics**: Loss, perplexity, and qualitative assessment | |
- **Monitoring**: Real-time tracking via Trackio | |
- **Validation**: Regular validation during training | |
## Citation | |
If you use this model in your research, please cite: | |
```bibtex | |
@misc{{{model_name_slug}}, | |
title={{{{model_name}}}}, | |
author={{{author_name}}}, | |
year={2024}, | |
url={https://huggingface.co/{{repo_name}}} | |
} | |
``` | |
## License | |
This model is licensed under the Apache 2.0 License. | |
## Acknowledgments | |
- **Base Model**: SmolLM3-3B by HuggingFaceTB | |
- **Training Framework**: PyTorch, Transformers, PEFT | |
- **Monitoring**: Trackio integration | |
- **Quantization**: torchao library | |
## Support | |
For questions and support: | |
- Open an issue on the Hugging Face repository | |
- Check the model documentation | |
- Review the training logs and configuration | |
## Repository Structure | |
``` | |
{{repo_name}}/ | |
βββ README.md (this file) | |
βββ config.json | |
βββ pytorch_model.bin | |
βββ tokenizer.json | |
βββ tokenizer_config.json | |
``` | |
## Usage Examples | |
### Text Generation | |
```python | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model = AutoModelForCausalLM.from_pretrained("{{repo_name}}") | |
tokenizer = AutoTokenizer.from_pretrained("{{repo_name}}") | |
text = "The future of artificial intelligence is" | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=100) | |
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
``` | |
### Conversation | |
```python | |
def chat_with_model(prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=max_length) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = chat_with_model("Hello, how are you today?") | |
print(response) | |
``` | |
### Advanced Usage | |
```python | |
# With generation parameters | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=100, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
``` | |
## Monitoring and Tracking | |
This model was trained with comprehensive monitoring: | |
- **Trackio Space**: {{trackio_url}} | |
- **Experiment**: {{experiment_name}} | |
- **Dataset Repository**: https://huggingface.co/datasets/{{dataset_repo}} | |
- **Training Logs**: Available in the experiment data | |
## Deployment | |
### Requirements | |
```bash | |
pip install torch transformers accelerate | |
{{#if quantized_models}} | |
pip install torchao # For quantized models | |
{{/if}} | |
``` | |
### Hardware Requirements | |
- **Main Model**: GPU with 8GB+ VRAM recommended | |
## Changelog | |
- **v1.0.0**: Initial release with fine-tuned model |