Tool_World / app.py
TuringsSolutions's picture
Update app.py
223bfba verified
# ==============================================================================
# Tool World: Advanced Prototype (Hugging Face Space Version)
# ==============================================================================
#
# This script has been updated to run as a Hugging Face Space.
#
# Key Upgrades from the original script:
# 1. **Hugging Face Model Integration**: Uses the fast 'Qwen/Qwen2-0.5B-Instruct'
# model from the Hugging Face Hub for argument extraction.
# 2. **Simplified Setup**: This model does not require a Hugging Face token.
# 3. **Standard Dependencies**: All dependencies are managed via a
# `requirements.txt` file.
#
# ==============================================================================
# ------------------------------
# 1. INSTALL & IMPORT PACKAGES
# ------------------------------
import numpy as np
import umap
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import matplotlib.pyplot as plt
import json
import os
from datetime import datetime, timedelta
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# ------------------------------
# 2. CONFIGURE & LOAD MODELS
# ------------------------------
print("⚙️ Loading embedding model...")
# Using a powerful model for better semantic understanding
embedder = SentenceTransformer('all-mpnet-base-v2')
print("✅ Embedding model loaded.")
# --- Configuration for Hugging Face Model-based Argument Extraction ---
try:
print("⚙️ Loading Hugging Face model for argument extraction...")
# Using the fast Qwen2 0.5B Instruct model
model_id = "Qwen/Qwen2-0.5B-Instruct"
hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
hf_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
device_map="auto" # Automatically use GPU if available
)
USE_HF_LLM = True
# The Qwen2 tokenizer has a built-in chat template, so we don't need to set it manually.
print(f"✅ Successfully loaded '{model_id}' model.")
except Exception as e:
USE_HF_LLM = False
print(f"⚠️ WARNING: Could not load the Hugging Face model. Reason: {e}")
print(" Argument extraction will be disabled.")
# ------------------------------
# 3. ADVANCED TOOL DEFINITION
# ------------------------------
class Tool:
"""
Represents a tool with structured arguments and rich descriptive data
for high-quality embedding.
"""
def __init__(self, name, description, args_schema, function, examples=None):
self.name = name
self.description = description
self.args_schema = args_schema
self.function = function
self.examples = examples or []
self.embedding = self._create_embedding()
def _create_embedding(self):
"""
Creates a rich embedding by combining the tool's name, description,
argument structure, and examples.
"""
schema_str = json.dumps(self.args_schema, indent=2)
examples_str = "\n".join([f" - Example: {ex['prompt']} -> Args: {json.dumps(ex['args'])}" for ex in self.examples])
embedding_text = (
f"Tool Name: {self.name}\n"
f"Description: {self.description}\n"
f"Argument Schema: {schema_str}\n"
f"Usage Examples:\n{examples_str}"
)
return embedder.encode(embedding_text, convert_to_tensor=True)
def __repr__(self):
return f"<Tool: {self.name}>"
# ------------------------------
# 4. TOOL IMPLEMENTATIONS
# ------------------------------
def get_weather_forecast(location: str, days: int = 1):
"""Simulates fetching a weather forecast."""
if not isinstance(location, str) or not isinstance(days, int):
return {"error": "Invalid argument types. 'location' must be a string and 'days' an integer."}
weather_conditions = ["Sunny", "Cloudy", "Rainy", "Windy", "Snowy"]
response = {"location": location, "forecast": []}
for i in range(days):
date = (datetime.now() + timedelta(days=i)).strftime('%Y-%m-%d')
condition = np.random.choice(weather_conditions)
temp = np.random.randint(5, 25)
response["forecast"].append({
"date": date,
"condition": condition,
"temperature_celsius": temp
})
return response
def create_calendar_event(title: str, date: str, duration_minutes: int = 60, participants: list = None):
"""Simulates creating a calendar event."""
try:
# Check for relative terms like "tomorrow"
if 'tomorrow' in date.lower():
event_base_date = datetime.now() + timedelta(days=1)
# Try to extract time, default to 9am if not specified
try:
time_part = datetime.strptime(date, '%I:%M %p').time()
except ValueError:
try:
time_part = datetime.strptime(date, '%H:%M').time()
except ValueError:
time_part = datetime.strptime('09:00', '%H:%M').time()
event_time = event_base_date.replace(hour=time_part.hour, minute=time_part.minute, second=0, microsecond=0)
else:
event_time = datetime.strptime(date, '%Y-%m-%d %H:%M')
return {
"status": "success",
"event_created": {
"title": title,
"start_time": event_time.isoformat(),
"end_time": (event_time + timedelta(minutes=duration_minutes)).isoformat(),
"participants": participants or ["organizer"]
}
}
except ValueError:
return {"error": "Invalid date format. Please use 'YYYY-MM-DD HH:MM' or a relative term like 'tomorrow at 10:00'."}
def summarize_text(text: str, compression_level: str = 'medium'):
"""Summarizes a given text based on a compression level."""
word_count = len(text.split())
ratios = {'high': 0.2, 'medium': 0.4, 'low': 0.7}
ratio = ratios.get(compression_level, 0.4)
summary_length = int(word_count * ratio)
summary = " ".join(text.split()[:summary_length])
return {"summary": summary + "...", "original_word_count": word_count, "summary_word_count": summary_length}
def search_web(query: str, domain: str = None):
"""Simulates a web search, with an optional domain filter."""
results = [
f"Simulated result 1 for '{query}'",
f"Simulated result 2 for '{query}'",
f"Simulated result 3 for '{query}'"
]
if domain:
return {"status": f"Searching for '{query}' within '{domain}'...", "results": results}
return {"status": f"Searching for '{query}'...", "results": results}
# ------------------------------
# 5. DEFINE THE TOOLSET
# ------------------------------
tools = [
Tool(
name="weather_reporter",
description="Provides the weather forecast for a specific location for a given number of days.",
args_schema={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, e.g., 'San Francisco, CA'"},
"days": {"type": "integer", "description": "The number of days to forecast", "default": 1}
},
"required": ["location"]
},
function=get_weather_forecast,
examples=[
{"prompt": "what's the weather like in London for the next 3 days", "args": {"location": "London", "days": 3}},
{"prompt": "forecast for New York tomorrow", "args": {"location": "New York", "days": 1}}
]
),
Tool(
name="calendar_creator",
description="Creates a new event in the user's calendar.",
args_schema={
"type": "object",
"properties": {
"title": {"type": "string", "description": "The title of the calendar event"},
"date": {"type": "string", "description": "The start date and time in 'YYYY-MM-DD HH:MM' format. Handles relative terms like 'tomorrow at 10:30 am'."},
"duration_minutes": {"type": "integer", "description": "The duration of the event in minutes", "default": 60},
"participants": {"type": "array", "items": {"type": "string"}, "description": "List of email addresses of participants"}
},
"required": ["title", "date"]
},
function=create_calendar_event,
examples=[
{"prompt": "Schedule a 'Project Sync' for tomorrow at 3pm with bob@example.com", "args": {"title": "Project Sync", "date": (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d 15:00'), "participants": ["bob@example.com"]}},
{"prompt": "new event: Dentist appointment on 2025-12-20 at 10:00 for 45 mins", "args": {"title": "Dentist appointment", "date": "2025-12-20 10:00", "duration_minutes": 45}}
]
),
Tool(
name="text_summarizer",
description="Summarizes a long piece of text. Can be set to high, medium, or low compression.",
args_schema={
"type": "object",
"properties": {
"text": {"type": "string", "description": "The text to be summarized."},
"compression_level": {"type": "string", "enum": ["high", "medium", "low"], "description": "The level of summarization.", "default": "medium"}
},
"required": ["text"]
},
function=summarize_text,
examples=[
{"prompt": "summarize this article for me, make it very short: [long text...]", "args": {"text": "[long text...]", "compression_level": "high"}}
]
),
Tool(
name="web_search",
description="Performs a web search to find information on a topic.",
args_schema={
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query."},
"domain": {"type": "string", "description": "Optional: a specific website domain to search within (e.g., 'wikipedia.org')."}
},
"required": ["query"]
},
function=search_web,
examples=[
{"prompt": "who invented the light bulb", "args": {"query": "who invented the light bulb"}},
{"prompt": "search for 'transformer models' on arxiv.org", "args": {"query": "transformer models", "domain": "arxiv.org"}}
]
)
]
print(f"✅ {len(tools)} tools defined and embedded.")
# ------------------------------
# 6. CORE LOGIC: TOOL SELECTION & ARGUMENT EXTRACTION
# ------------------------------
def find_best_tool(user_intent: str):
"""Finds the most semantically similar tool for a user's intent."""
intent_embedding = embedder.encode(user_intent, convert_to_tensor=True)
# Move tool embeddings to the same device as the intent embedding
tool_embeddings = [tool.embedding.to(intent_embedding.device) for tool in tools]
similarities = [util.pytorch_cos_sim(intent_embedding, tool_emb).item() for tool_emb in tool_embeddings]
best_index = int(np.argmax(similarities))
best_tool = tools[best_index]
best_score = similarities[best_index]
return best_tool, best_score, similarities
def extract_arguments_hf(user_prompt: str, tool: Tool):
"""
Uses a local Hugging Face model to extract structured arguments.
"""
system_prompt = f"""
You are an expert at extracting structured data from natural language.
Your task is to analyze the user's prompt and extract the arguments required to call the tool: '{tool.name}'.
You must adhere to the following JSON schema for the arguments:
{json.dumps(tool.args_schema, indent=2)}
- If a value is not present in the prompt for a non-required field, omit it from the JSON.
- If a required value is missing, return a JSON object with an "error" key explaining what is missing.
- Today's date is {datetime.now().strftime('%Y-%m-%d')}. If the user says "tomorrow", use {(datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')}.
- Respond ONLY with a valid JSON object. Do not include any other text, explanation, or markdown code blocks.
"""
# Qwen2 instruction-following format
chat = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
try:
# The tokenizer for Qwen2 has a built-in chat template.
prompt = hf_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = hf_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(hf_model.device)
# Generate with the model
outputs = hf_model.generate(input_ids=inputs, max_new_tokens=256, do_sample=False)
decoded_output = hf_tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
# Clean the response to find the JSON object
json_str = decoded_output.strip()
# Find the first '{' and the last '}' to get the JSON part
json_start = json_str.find('{')
json_end = json_str.rfind('}')
if json_start != -1 and json_end != -1:
json_str = json_str[json_start : json_end + 1]
return json.loads(json_str)
else:
raise json.JSONDecodeError("No JSON object found in the model output.", json_str, 0)
except Exception as e:
print(f"Error during HF model inference or JSON parsing: {e}")
return {"error": f"Failed to extract arguments with the local LLM. Details: {str(e)}"}
def execute_tool(user_prompt: str):
"""The main pipeline: Find tool, extract args, execute."""
selected_tool, score, _ = find_best_tool(user_prompt)
if USE_HF_LLM:
print(f"⚙️ Selected Tool: {selected_tool.name}. Extracting arguments with Qwen2...")
extracted_args = extract_arguments_hf(user_prompt, selected_tool)
else:
# Fallback if the model failed to load
extracted_args = {"error": "Argument extraction is disabled because the Hugging Face model could not be loaded."}
if 'error' in extracted_args:
print(f"❌ Argument extraction failed: {extracted_args['error']}")
# Ensure the final output string is valid JSON
final_output_str = json.dumps({
"error": "Execution failed during argument extraction.",
"details": extracted_args.get('error', 'Unknown extraction error')
})
return (
user_prompt,
selected_tool.name,
f"{score:.3f}",
json.dumps(extracted_args, indent=2),
final_output_str
)
print(f"✅ Arguments extracted: {json.dumps(extracted_args, indent=2)}")
try:
print(f"🚀 Executing tool function: {selected_tool.name}...")
output = selected_tool.function(**extracted_args)
print(f"✅ Execution complete.")
output_str = json.dumps(output, indent=2)
except Exception as e:
print(f"❌ Tool execution failed: {e}")
output_str = f'{{"error": "Tool execution failed", "details": "{str(e)}"}}'
return (
user_prompt,
selected_tool.name,
f"{score:.3f}",
json.dumps(extracted_args, indent=2),
output_str
)
# ------------------------------
# 7. VISUALIZATION
# ------------------------------
def plot_tool_world(user_intent=None):
"""Generates a 2D UMAP plot of the tool latent space."""
tool_vectors = [tool.embedding.cpu().numpy() for tool in tools]
labels = [tool.name for tool in tools]
all_vectors = tool_vectors
if user_intent and user_intent.strip():
intent_vector = embedder.encode(user_intent, convert_to_tensor=True).cpu().numpy()
all_vectors.append(intent_vector)
labels.append("Your Intent")
# UMAP requires at least 2 neighbors
n_neighbors = min(len(all_vectors) - 1, 5)
if n_neighbors < 1:
n_neighbors = 1
reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=0.3, metric='cosine', random_state=42)
# UMAP fit_transform requires at least 2 samples
if len(all_vectors) < 2:
# Create a dummy plot if there's not enough data
fig, ax = plt.subplots(figsize=(10, 7))
ax.text(0.5, 0.5, "Not enough data to create a plot.", ha='center', va='center')
return fig
reduced_vectors = reducer.fit_transform(all_vectors)
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 7))
for i, label in enumerate(labels):
x, y = reduced_vectors[i]
if label == "Your Intent":
ax.scatter(x, y, color='red', s=150, zorder=5, label=label, marker='*')
ax.text(x, y + 0.05, label, fontsize=12, ha='center', color='red', weight='bold')
else:
ax.scatter(x, y, s=100, alpha=0.8, label=label)
ax.text(x, y + 0.05, label, fontsize=10, ha='center')
ax.set_title("Tool World: Latent Space Map", fontsize=16)
ax.set_xlabel("UMAP Dimension 1", fontsize=12)
ax.set_ylabel("UMAP Dimension 2", fontsize=12)
ax.grid(True)
handles, labels_legend = ax.get_legend_handles_labels()
by_label = dict(zip(labels_legend, handles))
ax.legend(by_label.values(), by_label.keys())
plt.tight_layout()
return fig
# ------------------------------
# 8. GRADIO INTERFACE
# ------------------------------
print("🚀 Launching Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🛠️ Tool World: Advanced Prototype (Hugging Face Version)")
gr.Markdown(
"Enter a natural language command. The system will select the best tool, "
"extract structured arguments with **Qwen/Qwen2-0.5B-Instruct**, and execute it."
)
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(
label="Your Intent",
placeholder="e.g., What's the weather in Paris for 2 days?",
lines=3
)
run_btn = gr.Button("Invoke Tool", variant="primary")
gr.Markdown("---")
gr.Markdown("### Examples")
gr.Examples(
examples=[
"Schedule a 'Team Meeting' for tomorrow at 10:30 am",
"What is the weather forecast in Tokyo for the next 5 days?",
"search for the latest news on generative AI on reuters.com",
"Please give me a very short summary of this text: The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840."
],
inputs=inp
)
with gr.Column(scale=2):
gr.Markdown("### Invocation Details")
with gr.Row():
out_tool = gr.Textbox(label="Selected Tool", interactive=False)
out_score = gr.Textbox(label="Similarity Score", interactive=False)
out_args = gr.JSON(label="Extracted Arguments")
out_result = gr.JSON(label="Tool Execution Output")
with gr.Row():
gr.Markdown("---")
gr.Markdown("### Latent Space Visualization")
plot_output = gr.Plot(label="Tool World Map")
def process_and_plot(user_prompt):
if not user_prompt or not user_prompt.strip():
# Return empty state and the default plot
return "", "", {}, {}, plot_tool_world()
prompt, tool_name, score, args_json, result_json = execute_tool(user_prompt)
fig = plot_tool_world(user_prompt)
# Safely load JSON strings into objects for the UI
try:
args_obj = json.loads(args_json)
except (json.JSONDecodeError, TypeError):
args_obj = {"error": "Invalid JSON in arguments", "raw": args_json}
try:
result_obj = json.loads(result_json)
except (json.JSONDecodeError, TypeError):
result_obj = {"error": "Invalid JSON in result", "raw": result_json}
return tool_name, score, args_obj, result_obj, fig
run_btn.click(
fn=process_and_plot,
inputs=inp,
outputs=[out_tool, out_score, out_args, out_result, plot_output]
)
# Load the initial plot when the app starts
demo.load(fn=lambda: plot_tool_world(None), inputs=None, outputs=plot_output)
demo.launch()