StableAvatar / wan /dist /__init__.py
YinmingHuang's picture
Add application file
cf2f35c
import torch
import torch.distributed as dist
try:
import xfuser
from xfuser.core.distributed import (get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group, get_world_group,
init_distributed_environment,
initialize_model_parallel)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
except Exception as ex:
get_sequence_parallel_world_size = None
get_sequence_parallel_rank = None
xFuserLongContextAttention = None
get_sp_group = None
get_world_group = None
init_distributed_environment = None
initialize_model_parallel = None
def set_multi_gpus_devices(ulysses_degree, ring_degree):
if ulysses_degree > 1 or ring_degree > 1:
if get_sp_group is None:
raise RuntimeError("xfuser is not installed.")
dist.init_process_group("nccl")
print('parallel inference enabled: ulysses_degree=%d ring_degree=%d rank=%d world_size=%d' % (
ulysses_degree, ring_degree, dist.get_rank(),
dist.get_world_size()))
assert dist.get_world_size() == ring_degree * ulysses_degree, \
"number of GPUs(%d) should be equal to ring_degree * ulysses_degree." % dist.get_world_size()
init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(sequence_parallel_degree=dist.get_world_size(),
ring_degree=ring_degree,
ulysses_degree=ulysses_degree)
# device = torch.device("cuda:%d" % dist.get_rank())
device = torch.device(f"cuda:{get_world_group().local_rank}")
print('rank=%d device=%s' % (get_world_group().rank, str(device)))
else:
device = "cuda"
return device