PartCrafter / src /utils /metric_utils.py
alexnasa's picture
Upload 85 files
bef5729 verified
from src.utils.typing_utils import *
import trimesh
import numpy as np
from sklearn.neighbors import NearestNeighbors
def sample_from_mesh(
mesh: trimesh.Trimesh,
num_samples: Optional[int] = 10000,
):
if num_samples is None:
return mesh.vertices
else:
return mesh.sample(num_samples)
def sample_two_meshes(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_samples: Optional[int] = 10000,
):
points1 = sample_from_mesh(mesh1, num_samples)
points2 = sample_from_mesh(mesh2, num_samples)
return points1, points2
def compute_nearest_distance(
points1: np.ndarray,
points2: np.ndarray,
metric: str = 'l2'
) -> np.ndarray:
# Compute nearest neighbor distance from points1 to points2
nn = NearestNeighbors(n_neighbors=1, leaf_size=30, algorithm='kd_tree', metric=metric).fit(points2)
min_dist = nn.kneighbors(points1)[0]
return min_dist
def compute_mutual_nearest_distance(
points1: np.ndarray,
points2: np.ndarray,
metric: str = 'l2'
) -> np.ndarray:
min_1_to_2 = compute_nearest_distance(points1, points2, metric=metric)
min_2_to_1 = compute_nearest_distance(points2, points1, metric=metric)
return min_1_to_2, min_2_to_1
def compute_mutual_nearest_distance_for_meshes(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_samples: Optional[int] = 10000,
metric: str = 'l2'
) -> Tuple[np.ndarray, np.ndarray]:
points1 = sample_from_mesh(mesh1, num_samples)
points2 = sample_from_mesh(mesh2, num_samples)
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(points1, points2, metric=metric)
return min_1_to_2, min_2_to_1
def compute_chamfer_distance(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_samples: int = 10000,
metric: str = 'l2'
):
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
return chamfer_dist
def compute_f_score(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_samples: int = 10000,
threshold: float = 0.1,
metric: str = 'l2'
):
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
return fscore
def compute_cd_and_f_score(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_samples: Optional[int] = 10000,
threshold: float = 0.1,
metric: str = 'l2'
):
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
return chamfer_dist, fscore
def compute_cd_and_f_score_in_training(
gt_surface: np.ndarray,
pred_mesh: trimesh.Trimesh,
num_samples: int = 204800,
threshold: float = 0.1,
metric: str = 'l2'
):
gt_points = gt_surface[:, :3]
num_samples = max(num_samples, gt_points.shape[0])
gt_points = gt_points[np.random.choice(gt_points.shape[0], num_samples, replace=False)]
pred_points = sample_from_mesh(pred_mesh, num_samples)
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(gt_points, pred_points, metric=metric)
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
return chamfer_dist, fscore
def get_voxel_set(
mesh: trimesh.Trimesh,
num_grids: int = 64,
scale: float = 2.0,
):
if not isinstance(mesh, trimesh.Trimesh):
raise ValueError("mesh must be a trimesh.Trimesh object")
pitch = scale / num_grids
voxel_girds: trimesh.voxel.base.VoxelGrid = mesh.voxelized(pitch=pitch).fill()
voxels = set(map(tuple, np.round(voxel_girds.points / pitch).astype(int)))
return voxels
def compute_IoU(
mesh1: trimesh.Trimesh,
mesh2: trimesh.Trimesh,
num_grids: int = 64,
scale: float = 2.0,
):
if not isinstance(mesh1, trimesh.Trimesh) or not isinstance(mesh2, trimesh.Trimesh):
raise ValueError("mesh1 and mesh2 must be trimesh.Trimesh objects")
voxels1 = get_voxel_set(mesh1, num_grids, scale)
voxels2 = get_voxel_set(mesh2, num_grids, scale)
intersection = voxels1 & voxels2
union = voxels1 | voxels2
iou = len(intersection) / len(union) if len(union) > 0 else 0.0
return iou
def compute_IoU_for_scene(
scene: Union[trimesh.Scene, List[trimesh.Trimesh]],
num_grids: int = 64,
scale: float = 2.0,
return_type: Literal["iou", "iou_list"] = "iou",
):
if isinstance(scene, trimesh.Scene):
scene = scene.dump()
if isinstance(scene, list) and len(scene) > 1 and isinstance(scene[0], trimesh.Trimesh):
meshes = scene
else:
raise ValueError("scene must be a trimesh.Scene object or a list of trimesh.Trimesh objects")
ious = []
for i in range(len(meshes)):
for j in range(i+1, len(meshes)):
iou = compute_IoU(meshes[i], meshes[j], num_grids, scale)
ious.append(iou)
if return_type == "iou":
return np.mean(ious)
elif return_type == "iou_list":
return ious
else:
raise ValueError("return_type must be 'iou' or 'iou_list'")