Spaces:
Running
on
Zero
Running
on
Zero
from src.utils.typing_utils import * | |
import trimesh | |
import numpy as np | |
from sklearn.neighbors import NearestNeighbors | |
def sample_from_mesh( | |
mesh: trimesh.Trimesh, | |
num_samples: Optional[int] = 10000, | |
): | |
if num_samples is None: | |
return mesh.vertices | |
else: | |
return mesh.sample(num_samples) | |
def sample_two_meshes( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_samples: Optional[int] = 10000, | |
): | |
points1 = sample_from_mesh(mesh1, num_samples) | |
points2 = sample_from_mesh(mesh2, num_samples) | |
return points1, points2 | |
def compute_nearest_distance( | |
points1: np.ndarray, | |
points2: np.ndarray, | |
metric: str = 'l2' | |
) -> np.ndarray: | |
# Compute nearest neighbor distance from points1 to points2 | |
nn = NearestNeighbors(n_neighbors=1, leaf_size=30, algorithm='kd_tree', metric=metric).fit(points2) | |
min_dist = nn.kneighbors(points1)[0] | |
return min_dist | |
def compute_mutual_nearest_distance( | |
points1: np.ndarray, | |
points2: np.ndarray, | |
metric: str = 'l2' | |
) -> np.ndarray: | |
min_1_to_2 = compute_nearest_distance(points1, points2, metric=metric) | |
min_2_to_1 = compute_nearest_distance(points2, points1, metric=metric) | |
return min_1_to_2, min_2_to_1 | |
def compute_mutual_nearest_distance_for_meshes( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_samples: Optional[int] = 10000, | |
metric: str = 'l2' | |
) -> Tuple[np.ndarray, np.ndarray]: | |
points1 = sample_from_mesh(mesh1, num_samples) | |
points2 = sample_from_mesh(mesh2, num_samples) | |
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(points1, points2, metric=metric) | |
return min_1_to_2, min_2_to_1 | |
def compute_chamfer_distance( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_samples: int = 10000, | |
metric: str = 'l2' | |
): | |
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) | |
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) | |
return chamfer_dist | |
def compute_f_score( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_samples: int = 10000, | |
threshold: float = 0.1, | |
metric: str = 'l2' | |
): | |
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) | |
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) | |
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) | |
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) | |
return fscore | |
def compute_cd_and_f_score( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_samples: Optional[int] = 10000, | |
threshold: float = 0.1, | |
metric: str = 'l2' | |
): | |
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) | |
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) | |
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) | |
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) | |
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) | |
return chamfer_dist, fscore | |
def compute_cd_and_f_score_in_training( | |
gt_surface: np.ndarray, | |
pred_mesh: trimesh.Trimesh, | |
num_samples: int = 204800, | |
threshold: float = 0.1, | |
metric: str = 'l2' | |
): | |
gt_points = gt_surface[:, :3] | |
num_samples = max(num_samples, gt_points.shape[0]) | |
gt_points = gt_points[np.random.choice(gt_points.shape[0], num_samples, replace=False)] | |
pred_points = sample_from_mesh(pred_mesh, num_samples) | |
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(gt_points, pred_points, metric=metric) | |
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) | |
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) | |
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) | |
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) | |
return chamfer_dist, fscore | |
def get_voxel_set( | |
mesh: trimesh.Trimesh, | |
num_grids: int = 64, | |
scale: float = 2.0, | |
): | |
if not isinstance(mesh, trimesh.Trimesh): | |
raise ValueError("mesh must be a trimesh.Trimesh object") | |
pitch = scale / num_grids | |
voxel_girds: trimesh.voxel.base.VoxelGrid = mesh.voxelized(pitch=pitch).fill() | |
voxels = set(map(tuple, np.round(voxel_girds.points / pitch).astype(int))) | |
return voxels | |
def compute_IoU( | |
mesh1: trimesh.Trimesh, | |
mesh2: trimesh.Trimesh, | |
num_grids: int = 64, | |
scale: float = 2.0, | |
): | |
if not isinstance(mesh1, trimesh.Trimesh) or not isinstance(mesh2, trimesh.Trimesh): | |
raise ValueError("mesh1 and mesh2 must be trimesh.Trimesh objects") | |
voxels1 = get_voxel_set(mesh1, num_grids, scale) | |
voxels2 = get_voxel_set(mesh2, num_grids, scale) | |
intersection = voxels1 & voxels2 | |
union = voxels1 | voxels2 | |
iou = len(intersection) / len(union) if len(union) > 0 else 0.0 | |
return iou | |
def compute_IoU_for_scene( | |
scene: Union[trimesh.Scene, List[trimesh.Trimesh]], | |
num_grids: int = 64, | |
scale: float = 2.0, | |
return_type: Literal["iou", "iou_list"] = "iou", | |
): | |
if isinstance(scene, trimesh.Scene): | |
scene = scene.dump() | |
if isinstance(scene, list) and len(scene) > 1 and isinstance(scene[0], trimesh.Trimesh): | |
meshes = scene | |
else: | |
raise ValueError("scene must be a trimesh.Scene object or a list of trimesh.Trimesh objects") | |
ious = [] | |
for i in range(len(meshes)): | |
for j in range(i+1, len(meshes)): | |
iou = compute_IoU(meshes[i], meshes[j], num_grids, scale) | |
ious.append(iou) | |
if return_type == "iou": | |
return np.mean(ious) | |
elif return_type == "iou_list": | |
return ious | |
else: | |
raise ValueError("return_type must be 'iou' or 'iou_list'") |