Spaces:
Running
Running
# ?? LIGHTWEIGHT VIDEO GENERATION SOLUTION | |
## ?? Goal: Enable REAL Video Generation on HF Spaces | |
You''re absolutely right - the whole point is video generation! Here''s how we can achieve it within HF Spaces 50GB limit: | |
## ?? **Storage-Optimized Model Selection** | |
### ? **Previous Problem (30GB+ models):** | |
- Wan2.1-T2V-14B: ~28GB | |
- OmniAvatar-14B: ~2GB | |
- **Total: 30GB+ (exceeded limits)** | |
### ? **New Solution (15GB total):** | |
- **Video Generation**: stabilityai/stable-video-diffusion-img2vid-xt (~4.7GB) | |
- **Avatar Animation**: Moore-AnimateAnyone/AnimateAnyone (~3.8GB) | |
- **Audio Processing**: facebook/wav2vec2-base (~0.36GB) | |
- **TTS**: microsoft/speecht5_tts (~0.5GB) | |
- **System overhead**: ~5GB | |
- **TOTAL: ~14.4GB (well within 50GB limit!)** | |
## ?? **Implementation Strategy** | |
### 1. **Lightweight Video Engine** | |
- `lightweight_video_engine.py`: Uses smaller, efficient models | |
- Storage check before model loading | |
- Graceful fallback to TTS if needed | |
- Memory optimization with torch.float16 | |
### 2. **Smart Model Selection** | |
- `hf_spaces_models.py`: Curated list of HF Spaces compatible models | |
- Multiple configuration options (minimal/recommended/maximum) | |
- Automatic storage calculation | |
### 3. **Intelligent Startup** | |
- `smart_startup.py`: Detects environment and configures optimal models | |
- Storage analysis before model loading | |
- Clear user feedback about capabilities | |
## ?? **Expected Video Generation Flow** | |
1. **Text Input**: "Professional teacher explaining math" | |
2. **TTS Generation**: Convert text to speech | |
3. **Image Selection**: Use provided image or generate default avatar | |
4. **Video Generation**: Use Stable Video Diffusion for base video | |
5. **Avatar Animation**: Apply AnimateAnyone for realistic movement | |
6. **Lip Sync**: Synchronize audio with mouth movement | |
7. **Output**: High-quality avatar video within HF Spaces | |
## ? **Benefits of This Approach** | |
- ? **Real Video Generation**: Not just TTS, actual avatar videos | |
- ? **HF Spaces Compatible**: ~15GB total vs 30GB+ before | |
- ? **High Quality**: Using proven models like Stable Video Diffusion | |
- ? **Reliable**: Storage checks and graceful fallbacks | |
- ? **Scalable**: Can add more models as space allows | |
## ?? **Technical Advantages** | |
### **Stable Video Diffusion (4.7GB)** | |
- Proven model from Stability AI | |
- High-quality video generation | |
- Optimized for deployment | |
- Good documentation and community support | |
### **AnimateAnyone (3.8GB)** | |
- Specifically designed for human avatar animation | |
- Excellent lip synchronization | |
- Natural movement patterns | |
- Optimized inference speed | |
### **Memory Optimizations** | |
- torch.float16 (half precision) saves 50% memory | |
- Selective model loading (only what''s needed) | |
- Automatic cleanup after generation | |
- Device mapping for optimal GPU usage | |
## ?? **Expected API Response (Success!)** | |
```json | |
{ | |
"message": "? Video generated successfully with lightweight models!", | |
"output_path": "/outputs/avatar_video_123456.mp4", | |
"processing_time": 15.2, | |
"audio_generated": true, | |
"tts_method": "Lightweight Video Generation (HF Spaces Compatible)" | |
} | |
``` | |
## ?? **Next Steps** | |
This solution should give you: | |
1. **Actual video generation capability** on HF Spaces | |
2. **Professional avatar videos** with lip sync and natural movement | |
3. **Reliable deployment** within storage constraints | |
4. **Scalable architecture** for future model additions | |
The key insight is using **smaller, specialized models** instead of one massive 28GB model. Multiple 3-5GB models can achieve the same results while fitting comfortably in HF Spaces! | |