File size: 18,152 Bytes
2af59b8 5f1587b 2af59b8 7d4d822 dc8325f 7d4d822 2af59b8 dc8325f 2af59b8 dc8325f 2af59b8 7d4d822 2af59b8 7d4d822 2af59b8 7d4d822 dc8325f 7d4d822 dc8325f 2af59b8 dc8325f 2af59b8 dc8325f 2af59b8 dc8325f 37165e0 2af59b8 7d4d822 dc8325f 2af59b8 37165e0 2af59b8 dc8325f 2af59b8 7d4d822 dc8325f 2af59b8 7d4d822 dc8325f 2af59b8 dc8325f 2af59b8 7d4d822 2af59b8 7d4d822 2af59b8 7d4d822 2af59b8 dc8325f 2af59b8 7d4d822 2af59b8 dc8325f 2af59b8 6e8ee9d 2af59b8 dc8325f 4e48732 2af59b8 dc8325f 2af59b8 dc8325f 2af59b8 dc8325f 2af59b8 dc8325f 2af59b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import cv2
import tqdm
import uuid
import logging
import torch
import trackers
import numpy as np
import gradio as gr
import imageio.v3 as iio
import supervision as sv
from pathlib import Path
from typing import List, Optional, Tuple
from PIL import Image
from pipeline import build_pipeline
from utils import cfg, load_config, load_onnx_model
# Configuration constants
DETECTORS = {
"yolo8n-640": 'downloads/yolo8n-640.onnx',
"yolo8n-416": 'downloads/yolo8n-416.onnx',
}
DEFAULT_DETECTOR = list(DETECTORS.keys())[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.6
# Image
IMAGE_EXAMPLES = [
{"path": "./examples/images/forest.jpg", "label": "Local Image"},
{"path": "./examples/images/river.jpg", "label": "Local Image"},
{"path": "./examples/images/ocean.jpg", "label": "Local Image"},
]
# Video
MAX_NUM_FRAMES = 250
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
class TrackingAlgorithm:
BYTETRACK = "ByteTrack (2021)"
DEEPSORT = "DeepSORT (2017)"
SORT = "SORT (2016)"
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
VIDEO_EXAMPLES = [
{"path": "./examples/videos/sea.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "Person, Boat"},
{"path": "./examples/videos/forest.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "LightVehicle, Person, Boat"},
]
# Create a color palette for visualization
# These hex color codes define different colors for tracking different objects
color = sv.ColorPalette.from_hex([
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
])
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def get_pipeline(config: dict, onnx_path: str):
pipeline = build_pipeline(config)
load_onnx_model(pipeline.detector, onnx_path)
return pipeline
def detect_objects(
config: dict,
onnx_path: str,
images: List[np.ndarray] | np.ndarray,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
target_size: Optional[Tuple[int, int]] = None,
classes: Optional[List[str]] = None,
):
config.defrost()
config.detector.thresholds.confidence = float(confidence_threshold)
config.freeze()
pipeline = get_pipeline(config, onnx_path)
id2label = pipeline.detector.get_category_mapping()
label2id = {v: k for k, v in pipeline.detector.get_category_mapping().items()}
if classes is not None:
wrong_classes = [cls for cls in classes if cls not in label2id]
if wrong_classes:
gr.Warning(f"Classes not found in model config: {wrong_classes}")
keep_ids = [label2id[cls] for cls in classes if cls in label2id]
else:
keep_ids = None
if isinstance(images, np.ndarray) and images.ndim == 4:
images = [x for x in images] # split video array into list of images
results = []
for img in tqdm.tqdm(images, desc="Processing frames"):
output_ = pipeline(img)
output_reshaped = {
"scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
"labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
"boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
}
results.append(output_reshaped)
if target_size:
# Resize boxes to target size
scale_x = target_size[0] / img.shape[1]
scale_y = target_size[1] / img.shape[0]
output_reshaped["boxes"][:, [0, 2]] *= scale_x
output_reshaped["boxes"][:, [1, 3]] *= scale_y
# # move results to cpu
for i, result in enumerate(results):
results[i] = {k: v for k, v in result.items()}
if keep_ids is not None:
keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
results[i] = {k: v[keep] for k, v in results[i].items()}
# return results, model.config.id2label
return results, pipeline.detector.get_category_mapping()
def process_image(
model: str = DEFAULT_DETECTOR,
image: Optional[Image.Image] = None,
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
):
load_config(cfg, f'configs/{model}.yaml')
results, id2label = detect_objects(
config=cfg.pipeline,
onnx_path=DETECTORS[model],
images=[np.array(image)],
confidence_threshold=confidence_threshold,
)
result = results[0] # first image in batch (we have batch size 1)
annotations = []
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
text_label = id2label[label.item()]
formatted_label = f"{text_label} ({score:.2f})"
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(image.width - 1, x_max)
y_max = min(image.height - 1, y_max)
annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
return (image, annotations)
def get_target_size(image_height, image_width, max_size: int):
if image_height < max_size and image_width < max_size:
new_height, new_width = image_height, image_width
elif image_height > image_width:
new_height = max_size
new_width = int(image_width * max_size / image_height)
else:
new_width = max_size
new_height = int(image_height * max_size / image_width)
# make even (for video codec compatibility)
new_height = new_height // 2 * 2
new_width = new_width // 2 * 2
return new_width, new_height
def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
cap = cv2.VideoCapture(video_path)
frames = []
i = 0
progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
while cap.isOpened() and len(frames) < k:
ret, frame = cap.read()
if not ret:
break
if i % read_every_i_frame == 0:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
progress_bar.update(1)
i += 1
cap.release()
progress_bar.close()
return frames
def get_tracker(tracker: str, fps: float):
if tracker == TrackingAlgorithm.SORT:
return trackers.SORTTracker(frame_rate=fps)
elif tracker == TrackingAlgorithm.DEEPSORT:
feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
elif tracker == TrackingAlgorithm.BYTETRACK:
return sv.ByteTrack(frame_rate=int(fps))
else:
raise ValueError(f"Invalid tracker: {tracker}")
def update_tracker(tracker, detections, frame):
tracker_name = tracker.__class__.__name__
if tracker_name == "SORTTracker":
return tracker.update(detections)
elif tracker_name == "DeepSORTTracker":
return tracker.update(detections, frame)
elif tracker_name == "ByteTrack":
return tracker.update_with_detections(detections)
else:
raise ValueError(f"Invalid tracker: {tracker}")
def process_video(
video_path: str,
checkpoint: str,
tracker_algorithm: Optional[str] = None,
classes: str = "all",
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> str:
if not video_path or not os.path.isfile(video_path):
raise ValueError(f"Invalid video path: {video_path}")
ext = os.path.splitext(video_path)[1].lower()
if ext not in ALLOWED_VIDEO_EXTENSIONS:
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
video_info = sv.VideoInfo.from_video_path(video_path)
read_each_i_frame = max(1, video_info.fps // 25)
target_fps = video_info.fps / read_each_i_frame
target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)
n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
# Set the color lookup mode to assign colors by track ID
# This mean objects with the same track ID will be annotated by the same color
color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS
box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
# preprocess classes
if classes != "all":
classes_list = [cls.strip() for cls in classes.split(",")]
else:
classes_list = None
load_config(cfg, f'configs/{checkpoint}.yaml')
results, id2label = detect_objects(
config=cfg.pipeline,
onnx_path=DETECTORS[checkpoint],
images=np.array(frames),
confidence_threshold=confidence_threshold,
target_size=(target_height, target_width),
classes=classes_list,
)
annotated_frames = []
# detections
if tracker_algorithm:
tracker = get_tracker(tracker_algorithm, target_fps)
for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
detections = sv.Detections.from_transformers(result, id2label=id2label)
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
detections = update_tracker(tracker, detections, frame)
labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frames.append(annotated_frame)
else:
for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
detections = sv.Detections.from_transformers(result, id2label=id2label)
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frames.append(annotated_frame)
output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
return output_filename
def create_image_inputs() -> List[gr.components.Component]:
return [
gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "webcam"],
interactive=True,
elem_classes="input-component",
),
gr.Dropdown(
choices=list(DETECTORS.keys()),
label="Select Model Checkpoint",
value=DEFAULT_DETECTOR,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_video_inputs() -> List[gr.components.Component]:
return [
gr.Video(
label="Upload Video",
sources=["upload"],
interactive=True,
format="mp4", # Ensure MP4 format
elem_classes="input-component",
),
gr.Dropdown(
choices=list(DETECTORS.keys()),
label="Select Model Checkpoint",
value=DEFAULT_DETECTOR,
elem_classes="input-component",
),
gr.Dropdown(
choices=TRACKERS,
label="Select Tracker (Optional)",
value=None,
elem_classes="input-component",
),
gr.TextArea(
label="Specify Class Names to Detect (comma separated)",
value="all",
lines=1,
elem_classes="input-component",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=DEFAULT_CONFIDENCE_THRESHOLD,
step=0.1,
label="Confidence Threshold",
elem_classes="input-component",
),
]
def create_button_row() -> List[gr.Button]:
return [
gr.Button(
f"Detect Objects", variant="primary", elem_classes="action-button"
),
gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
]
# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown(
"""
# Pipeline for Aerial Search and Rescue Demo
Experience state-of-the-art object detection with Open Source [WALDO30](https://huggingface.co/StephanST/WALDO30) models.
- **Image** and **Video** modes are supported.
- Select a model and adjust the confidence threshold to see detections!
- On video mode, you can enable tracking powered by [Supervision](https://github.com/roboflow/supervision) and [Trackers](https://github.com/roboflow/trackers) from Roboflow.
For more details and source code, visit the [PiSAR](https://github.com/eadali/PiSAR).
""",
elem_classes="header-text",
)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
(
image_input,
image_model_checkpoint,
image_confidence_threshold,
) = create_image_inputs()
image_detect_button, image_clear_button = create_button_row()
with gr.Column(scale=2):
image_output = gr.AnnotatedImage(
label="Detection Results",
show_label=True,
color_map=None,
elem_classes="output-component",
)
gr.Examples(
examples=[
[
DEFAULT_DETECTOR,
example["path"],
DEFAULT_CONFIDENCE_THRESHOLD,
]
for example in IMAGE_EXAMPLES
],
inputs=[
image_model_checkpoint,
image_input,
image_confidence_threshold,
],
outputs=[image_output],
fn=process_image,
label="Select an image example to populate inputs",
cache_examples=True,
cache_mode="lazy",
)
with gr.Tab("Video"):
gr.Markdown(
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
with gr.Group():
video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
video_detect_button, video_clear_button = create_button_row()
with gr.Column(scale=2):
video_output = gr.Video(
label="Detection Results",
format="mp4", # Explicit MP4 format
elem_classes="output-component",
)
gr.Examples(
examples=[
[example["path"], DEFAULT_DETECTOR, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
for example in VIDEO_EXAMPLES
],
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
outputs=[video_output],
fn=process_video,
cache_examples=False,
label="Select a video example to populate inputs",
)
# Image clear button
image_clear_button.click(
fn=lambda: (
None,
DEFAULT_DETECTOR,
DEFAULT_CONFIDENCE_THRESHOLD,
None,
),
outputs=[
image_input,
image_model_checkpoint,
image_confidence_threshold,
image_output,
],
)
# Video clear button
video_clear_button.click(
fn=lambda: (
None,
DEFAULT_DETECTOR,
None,
"all",
DEFAULT_CONFIDENCE_THRESHOLD,
None,
),
outputs=[
video_input,
video_checkpoint,
video_tracker,
video_classes,
video_confidence_threshold,
video_output,
],
)
# Image detect button
image_detect_button.click(
fn=process_image,
inputs=[
image_model_checkpoint,
image_input,
image_confidence_threshold,
],
outputs=[image_output],
)
# Video detect button
video_detect_button.click(
fn=process_video,
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
outputs=[video_output],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |