File size: 18,152 Bytes
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1587b
 
2af59b8
 
 
7d4d822
 
 
 
dc8325f
7d4d822
2af59b8
 
 
 
dc8325f
 
 
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
 
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4d822
 
 
 
2af59b8
 
 
7d4d822
 
2af59b8
 
 
 
 
7d4d822
dc8325f
7d4d822
 
dc8325f
 
2af59b8
dc8325f
2af59b8
 
dc8325f
2af59b8
 
 
 
 
 
 
dc8325f
 
 
 
 
 
 
 
 
 
 
 
 
 
37165e0
 
2af59b8
7d4d822
dc8325f
 
 
 
 
2af59b8
37165e0
 
2af59b8
 
 
dc8325f
2af59b8
 
 
7d4d822
dc8325f
2af59b8
7d4d822
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
2af59b8
 
 
7d4d822
2af59b8
7d4d822
 
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4d822
2af59b8
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4d822
2af59b8
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8ee9d
 
2af59b8
 
 
dc8325f
4e48732
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8325f
2af59b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import os
import cv2
import tqdm
import uuid
import logging

import torch
import trackers
import numpy as np
import gradio as gr
import imageio.v3 as iio
import supervision as sv

from pathlib import Path
from typing import List, Optional, Tuple

from PIL import Image
from pipeline import build_pipeline
from utils import cfg, load_config, load_onnx_model


# Configuration constants
DETECTORS = {
    "yolo8n-640": 'downloads/yolo8n-640.onnx',
    "yolo8n-416": 'downloads/yolo8n-416.onnx',
}
DEFAULT_DETECTOR = list(DETECTORS.keys())[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.6


# Image
IMAGE_EXAMPLES = [
    {"path": "./examples/images/forest.jpg", "label": "Local Image"},
    {"path": "./examples/images/river.jpg", "label": "Local Image"},
    {"path": "./examples/images/ocean.jpg", "label": "Local Image"},
]

# Video
MAX_NUM_FRAMES = 250
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

class TrackingAlgorithm:
    BYTETRACK = "ByteTrack (2021)"
    DEEPSORT = "DeepSORT (2017)"
    SORT = "SORT (2016)"

TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
VIDEO_EXAMPLES = [
    {"path": "./examples/videos/sea.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "Person, Boat"},
    {"path": "./examples/videos/forest.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "LightVehicle, Person, Boat"},
]


# Create a color palette for visualization
# These hex color codes define different colors for tracking different objects
color = sv.ColorPalette.from_hex([
    "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
    "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
])


logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


def get_pipeline(config: dict, onnx_path: str):
    pipeline = build_pipeline(config)
    load_onnx_model(pipeline.detector, onnx_path) 
    return pipeline


def detect_objects(
    config: dict,
    onnx_path: str,
    images: List[np.ndarray] | np.ndarray, 
    confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
    target_size: Optional[Tuple[int, int]] = None,
    classes: Optional[List[str]] = None,
):
    config.defrost()
    config.detector.thresholds.confidence = float(confidence_threshold)
    config.freeze()
    pipeline = get_pipeline(config, onnx_path)
    id2label = pipeline.detector.get_category_mapping()
    label2id = {v: k for k, v in pipeline.detector.get_category_mapping().items()}
    if classes is not None:
        wrong_classes = [cls for cls in classes if cls not in label2id]
        if wrong_classes:
            gr.Warning(f"Classes not found in model config: {wrong_classes}")
        keep_ids = [label2id[cls] for cls in classes if cls in label2id]
    else:
        keep_ids = None

    if isinstance(images, np.ndarray) and images.ndim == 4:
        images = [x for x in images]  # split video array into list of images

    results = []
    for img in tqdm.tqdm(images, desc="Processing frames"):
        output_ = pipeline(img)
        output_reshaped = {
        "scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
        "labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
        "boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
        }
        results.append(output_reshaped)
        if target_size:
            # Resize boxes to target size
            scale_x = target_size[0] / img.shape[1]
            scale_y = target_size[1] / img.shape[0]
            output_reshaped["boxes"][:, [0, 2]] *= scale_x
            output_reshaped["boxes"][:, [1, 3]] *= scale_y
        
        

    # # move results to cpu
    for i, result in enumerate(results):
        results[i] = {k: v for k, v in result.items()}
        if keep_ids is not None:
            keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
            results[i] = {k: v[keep] for k, v in results[i].items()}
    
    # return results, model.config.id2label
    return results, pipeline.detector.get_category_mapping()


def process_image(
    model: str = DEFAULT_DETECTOR,
    image: Optional[Image.Image] = None,
    confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
):
    
    load_config(cfg, f'configs/{model}.yaml')
    results, id2label = detect_objects(
        config=cfg.pipeline,
        onnx_path=DETECTORS[model],
        images=[np.array(image)],
        confidence_threshold=confidence_threshold,
    )
    result = results[0] # first image in batch (we have batch size 1)

    annotations = []
    for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
        text_label = id2label[label.item()]
        formatted_label = f"{text_label} ({score:.2f})"
        x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
        x_min = max(0, x_min)
        y_min = max(0, y_min)
        x_max = min(image.width - 1, x_max)
        y_max = min(image.height - 1, y_max)
        annotations.append(((x_min, y_min, x_max, y_max), formatted_label))

    return (image, annotations)


def get_target_size(image_height, image_width, max_size: int):
    if image_height < max_size and image_width < max_size:
        new_height, new_width = image_height, image_width 
    elif image_height > image_width:
        new_height = max_size
        new_width = int(image_width * max_size / image_height)
    else:
        new_width = max_size
        new_height = int(image_height * max_size / image_width)
    
    # make even (for video codec compatibility)
    new_height = new_height // 2 * 2
    new_width = new_width // 2 * 2

    return new_width, new_height


def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
    cap = cv2.VideoCapture(video_path)
    frames = []
    i = 0
    progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
    while cap.isOpened() and len(frames) < k:
        ret, frame = cap.read()
        if not ret:
            break
        if i % read_every_i_frame == 0:
            frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            progress_bar.update(1)
        i += 1
    cap.release()
    progress_bar.close()
    return frames


def get_tracker(tracker: str, fps: float):
    if tracker == TrackingAlgorithm.SORT:
        return trackers.SORTTracker(frame_rate=fps)
    elif tracker == TrackingAlgorithm.DEEPSORT:
        feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
        return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
    elif tracker == TrackingAlgorithm.BYTETRACK:  
        return sv.ByteTrack(frame_rate=int(fps))
    else:
        raise ValueError(f"Invalid tracker: {tracker}")


def update_tracker(tracker, detections, frame):
    tracker_name = tracker.__class__.__name__
    if tracker_name == "SORTTracker":
        return tracker.update(detections)
    elif tracker_name == "DeepSORTTracker":
        return tracker.update(detections, frame)
    elif tracker_name == "ByteTrack":
        return tracker.update_with_detections(detections)
    else:
        raise ValueError(f"Invalid tracker: {tracker}")


def process_video(
    video_path: str,
    checkpoint: str,
    tracker_algorithm: Optional[str] = None,
    classes: str = "all",
    confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> str:
    
    if not video_path or not os.path.isfile(video_path):
        raise ValueError(f"Invalid video path: {video_path}")

    ext = os.path.splitext(video_path)[1].lower()
    if ext not in ALLOWED_VIDEO_EXTENSIONS:
        raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")

    video_info = sv.VideoInfo.from_video_path(video_path)
    read_each_i_frame = max(1, video_info.fps // 25)
    target_fps = video_info.fps / read_each_i_frame
    target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)

    n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
    frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
    frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]

    # Set the color lookup mode to assign colors by track ID
    # This mean objects with the same track ID will be annotated by the same color
    color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS

    box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
    label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)

    # preprocess classes
    if classes != "all":
        classes_list = [cls.strip() for cls in classes.split(",")]
    else:
        classes_list = None

    load_config(cfg, f'configs/{checkpoint}.yaml')
    results, id2label = detect_objects(
        config=cfg.pipeline,
        onnx_path=DETECTORS[checkpoint],
        images=np.array(frames),
        confidence_threshold=confidence_threshold,
        target_size=(target_height, target_width),
        classes=classes_list,
    )


    annotated_frames = []

    # detections
    if tracker_algorithm:
        tracker = get_tracker(tracker_algorithm, target_fps)
        for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
            detections = sv.Detections.from_transformers(result, id2label=id2label)
            detections = detections.with_nms(threshold=0.95, class_agnostic=True)
            detections = update_tracker(tracker, detections, frame)
            labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
            annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
            annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
            annotated_frames.append(annotated_frame)
        
    else:
        for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
            detections = sv.Detections.from_transformers(result, id2label=id2label)
            detections = detections.with_nms(threshold=0.95, class_agnostic=True)
            annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
            annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
            annotated_frames.append(annotated_frame)

    output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
    iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
    return output_filename



def create_image_inputs() -> List[gr.components.Component]:
    return [
        gr.Image(
            label="Upload Image",
            type="pil",
            sources=["upload", "webcam"],
            interactive=True,
            elem_classes="input-component",
        ),
        gr.Dropdown(
            choices=list(DETECTORS.keys()),
            label="Select Model Checkpoint",
            value=DEFAULT_DETECTOR,
            elem_classes="input-component",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=DEFAULT_CONFIDENCE_THRESHOLD,
            step=0.1,
            label="Confidence Threshold",
            elem_classes="input-component",
        ),
    ]


def create_video_inputs() -> List[gr.components.Component]:
    return [
        gr.Video(
            label="Upload Video",
            sources=["upload"],
            interactive=True,
            format="mp4",  # Ensure MP4 format
            elem_classes="input-component",
        ),
        gr.Dropdown(
            choices=list(DETECTORS.keys()),
            label="Select Model Checkpoint",
            value=DEFAULT_DETECTOR,
            elem_classes="input-component",
        ),
        gr.Dropdown(
            choices=TRACKERS,
            label="Select Tracker (Optional)",
            value=None,
            elem_classes="input-component",
        ),
        gr.TextArea(
            label="Specify Class Names to Detect (comma separated)",
            value="all",
            lines=1,
            elem_classes="input-component",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=DEFAULT_CONFIDENCE_THRESHOLD,
            step=0.1,
            label="Confidence Threshold",
            elem_classes="input-component",
        ),
    ]


def create_button_row() -> List[gr.Button]:
    return [
        gr.Button(
            f"Detect Objects", variant="primary", elem_classes="action-button"
        ),
        gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
    ]


# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown(
        """
        # Pipeline for Aerial Search and Rescue Demo
        Experience state-of-the-art object detection with Open Source [WALDO30](https://huggingface.co/StephanST/WALDO30) models.
         - **Image** and **Video** modes are supported.
         - Select a model and adjust the confidence threshold to see detections!
         - On video mode, you can enable tracking powered by [Supervision](https://github.com/roboflow/supervision) and [Trackers](https://github.com/roboflow/trackers) from Roboflow.

        For more details and source code, visit the [PiSAR](https://github.com/eadali/PiSAR).
        """,
        elem_classes="header-text",
    )

    with gr.Tabs():
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1, min_width=300):
                    with gr.Group():
                        (
                            image_input,
                            image_model_checkpoint,
                            image_confidence_threshold,
                        ) = create_image_inputs()
                        image_detect_button, image_clear_button = create_button_row()
                with gr.Column(scale=2):
                    image_output = gr.AnnotatedImage(
                        label="Detection Results",
                        show_label=True,
                        color_map=None,
                        elem_classes="output-component",
                    )
            gr.Examples(
                examples=[
                    [
                        DEFAULT_DETECTOR,
                        example["path"],
                        DEFAULT_CONFIDENCE_THRESHOLD,
                    ]
                    for example in IMAGE_EXAMPLES
                ],
                inputs=[
                    image_model_checkpoint,
                    image_input,
                    image_confidence_threshold,
                ],
                outputs=[image_output],
                fn=process_image,
                label="Select an image example to populate inputs",
                cache_examples=True,
                cache_mode="lazy",
            )

        with gr.Tab("Video"):
            gr.Markdown(
                f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
            )
            with gr.Row():
                with gr.Column(scale=1, min_width=300):
                    with gr.Group():
                        video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
                        video_detect_button, video_clear_button = create_button_row()
                with gr.Column(scale=2):
                    video_output = gr.Video(
                        label="Detection Results",
                        format="mp4",  # Explicit MP4 format
                        elem_classes="output-component",
                    )

            gr.Examples(
                examples=[
                    [example["path"], DEFAULT_DETECTOR, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
                    for example in VIDEO_EXAMPLES
                ],
                inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
                outputs=[video_output],
                fn=process_video,
                cache_examples=False,
                label="Select a video example to populate inputs",
            )

    # Image clear button
    image_clear_button.click(
        fn=lambda: (
            None,
            DEFAULT_DETECTOR,
            DEFAULT_CONFIDENCE_THRESHOLD,
            None,
        ),
        outputs=[
            image_input,
            image_model_checkpoint,
            image_confidence_threshold,
            image_output,
        ],
    )

    # Video clear button
    video_clear_button.click(
        fn=lambda: (
            None,
            DEFAULT_DETECTOR,
            None,
            "all",
            DEFAULT_CONFIDENCE_THRESHOLD,
            None,
        ),
        outputs=[
            video_input,
            video_checkpoint,
            video_tracker,
            video_classes,
            video_confidence_threshold,
            video_output,
        ],
    )

    # Image detect button
    image_detect_button.click(
        fn=process_image,
        inputs=[
            image_model_checkpoint,
            image_input,
            image_confidence_threshold,
        ],
        outputs=[image_output],
    )

    # Video detect button
    video_detect_button.click(
        fn=process_video,
        inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
        outputs=[video_output],
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()