Stand-In / utils /__init__.py
fffiloni's picture
Migrated from GitHub
26557da verified
import torch, warnings, glob, os
import numpy as np
from PIL import Image
from einops import repeat, reduce
from typing import Optional, Union
from dataclasses import dataclass
import numpy as np
from PIL import Image
from typing import Optional
class BasePipeline(torch.nn.Module):
def __init__(
self,
device="cuda",
torch_dtype=torch.float16,
height_division_factor=64,
width_division_factor=64,
time_division_factor=None,
time_division_remainder=None,
):
super().__init__()
# The device and torch_dtype is used for the storage of intermediate variables, not models.
self.device = device
self.torch_dtype = torch_dtype
# The following parameters are used for shape check.
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
self.time_division_factor = time_division_factor
self.time_division_remainder = time_division_remainder
self.vram_management_enabled = False
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if device is not None:
self.device = device
if dtype is not None:
self.torch_dtype = dtype
super().to(*args, **kwargs)
return self
def check_resize_height_width(self, height, width, num_frames=None):
# Shape check
if height % self.height_division_factor != 0:
height = (
(height + self.height_division_factor - 1)
// self.height_division_factor
* self.height_division_factor
)
print(
f"height % {self.height_division_factor} != 0. We round it up to {height}."
)
if width % self.width_division_factor != 0:
width = (
(width + self.width_division_factor - 1)
// self.width_division_factor
* self.width_division_factor
)
print(
f"width % {self.width_division_factor} != 0. We round it up to {width}."
)
if num_frames is None:
return height, width
else:
if num_frames % self.time_division_factor != self.time_division_remainder:
num_frames = (
(num_frames + self.time_division_factor - 1)
// self.time_division_factor
* self.time_division_factor
+ self.time_division_remainder
)
print(
f"num_frames % {self.time_division_factor} != {self.time_division_remainder}. We round it up to {num_frames}."
)
return height, width, num_frames
def preprocess_image(
self,
image,
torch_dtype=None,
device=None,
pattern="B C H W",
min_value=-1,
max_value=1,
):
# Transform a PIL.Image to torch.Tensor
image = torch.Tensor(np.array(image, dtype=np.float32))
image = image.to(
dtype=torch_dtype or self.torch_dtype, device=device or self.device
)
image = image * ((max_value - min_value) / 255) + min_value
image = repeat(
image, f"H W C -> {pattern}", **({"B": 1} if "B" in pattern else {})
)
return image
def preprocess_video(
self,
video,
torch_dtype=None,
device=None,
pattern="B C T H W",
min_value=-1,
max_value=1,
):
# Transform a list of PIL.Image to torch.Tensor
video = [
self.preprocess_image(
image,
torch_dtype=torch_dtype,
device=device,
min_value=min_value,
max_value=max_value,
)
for image in video
]
video = torch.stack(video, dim=pattern.index("T") // 2)
return video
def vae_output_to_image(
self, vae_output, pattern="B C H W", min_value=-1, max_value=1
):
# Transform a torch.Tensor to PIL.Image
if pattern != "H W C":
vae_output = reduce(vae_output, f"{pattern} -> H W C", reduction="mean")
image = ((vae_output - min_value) * (255 / (max_value - min_value))).clip(
0, 255
)
image = image.to(device="cpu", dtype=torch.uint8)
image = Image.fromarray(image.numpy())
return image
def vae_output_to_video(
self, vae_output, pattern="B C T H W", min_value=-1, max_value=1
):
# Transform a torch.Tensor to list of PIL.Image
if pattern != "T H W C":
vae_output = reduce(vae_output, f"{pattern} -> T H W C", reduction="mean")
video = [
self.vae_output_to_image(
image, pattern="H W C", min_value=min_value, max_value=max_value
)
for image in vae_output
]
return video
def load_models_to_device(self, model_names=[]):
if self.vram_management_enabled:
# offload models
for name, model in self.named_children():
if name not in model_names:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "offload"):
module.offload()
else:
model.cpu()
torch.cuda.empty_cache()
# onload models
for name, model in self.named_children():
if name in model_names:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "onload"):
module.onload()
else:
model.to(self.device)
def generate_noise(
self,
shape,
seed=None,
rand_device="cpu",
rand_torch_dtype=torch.float32,
device=None,
torch_dtype=None,
):
# Initialize Gaussian noise
generator = (
None if seed is None else torch.Generator(rand_device).manual_seed(seed)
)
noise = torch.randn(
shape, generator=generator, device=rand_device, dtype=rand_torch_dtype
)
noise = noise.to(
dtype=torch_dtype or self.torch_dtype, device=device or self.device
)
return noise
def enable_cpu_offload(self):
warnings.warn(
"`enable_cpu_offload` will be deprecated. Please use `enable_vram_management`."
)
self.vram_management_enabled = True
def get_vram(self):
return torch.cuda.mem_get_info(self.device)[1] / (1024**3)
def freeze_except(self, model_names):
for name, model in self.named_children():
if name in model_names:
model.train()
model.requires_grad_(True)
else:
model.eval()
model.requires_grad_(False)
@dataclass
class ModelConfig:
path: Union[str, list[str]] = None
model_id: str = None
origin_file_pattern: Union[str, list[str]] = None
download_resource: str = "ModelScope"
offload_device: Optional[Union[str, torch.device]] = None
offload_dtype: Optional[torch.dtype] = None
local_model_path: str = None
skip_download: bool = False
def download_if_necessary(self, use_usp=False):
if self.path is None:
# Check model_id and origin_file_pattern
if self.model_id is None:
raise ValueError(
f"""No valid model files. Please use `ModelConfig(path="xxx")` or `ModelConfig(model_id="xxx/yyy", origin_file_pattern="zzz")`."""
)
# Skip if not in rank 0
if use_usp:
import torch.distributed as dist
skip_download = self.skip_download or dist.get_rank() != 0
else:
skip_download = self.skip_download
# Check whether the origin path is a folder
if self.origin_file_pattern is None or self.origin_file_pattern == "":
self.origin_file_pattern = ""
allow_file_pattern = None
is_folder = True
elif isinstance(
self.origin_file_pattern, str
) and self.origin_file_pattern.endswith("/"):
allow_file_pattern = self.origin_file_pattern + "*"
is_folder = True
else:
allow_file_pattern = self.origin_file_pattern
is_folder = False
# Download
if not skip_download:
if self.local_model_path is None:
self.local_model_path = "./models"
downloaded_files = glob.glob(
self.origin_file_pattern,
root_dir=os.path.join(self.local_model_path, self.model_id),
)
snapshot_download(
self.model_id,
local_dir=os.path.join(self.local_model_path, self.model_id),
allow_file_pattern=allow_file_pattern,
ignore_file_pattern=downloaded_files,
local_files_only=False,
)
# Let rank 1, 2, ... wait for rank 0
if use_usp:
import torch.distributed as dist
dist.barrier(device_ids=[dist.get_rank()])
# Return downloaded files
if is_folder:
self.path = os.path.join(
self.local_model_path, self.model_id, self.origin_file_pattern
)
else:
self.path = glob.glob(
os.path.join(
self.local_model_path, self.model_id, self.origin_file_pattern
)
)
if isinstance(self.path, list) and len(self.path) == 1:
self.path = self.path[0]
class PipelineUnit:
def __init__(
self,
seperate_cfg: bool = False,
take_over: bool = False,
input_params: tuple[str] = None,
input_params_posi: dict[str, str] = None,
input_params_nega: dict[str, str] = None,
onload_model_names: tuple[str] = None,
):
self.seperate_cfg = seperate_cfg
self.take_over = take_over
self.input_params = input_params
self.input_params_posi = input_params_posi
self.input_params_nega = input_params_nega
self.onload_model_names = onload_model_names
def process(
self, pipe: BasePipeline, inputs: dict, positive=True, **kwargs
) -> dict:
raise NotImplementedError("`process` is not implemented.")
class PipelineUnitRunner:
def __init__(self):
pass
def __call__(
self,
unit: PipelineUnit,
pipe: BasePipeline,
inputs_shared: dict,
inputs_posi: dict,
inputs_nega: dict,
) -> tuple[dict, dict]:
if unit.take_over:
# Let the pipeline unit take over this function.
inputs_shared, inputs_posi, inputs_nega = unit.process(
pipe,
inputs_shared=inputs_shared,
inputs_posi=inputs_posi,
inputs_nega=inputs_nega,
)
elif unit.seperate_cfg:
# Positive side
processor_inputs = {
name: inputs_posi.get(name_)
for name, name_ in unit.input_params_posi.items()
}
if unit.input_params is not None:
for name in unit.input_params:
processor_inputs[name] = inputs_shared.get(name)
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_posi.update(processor_outputs)
# Negative side
if inputs_shared["cfg_scale"] != 1:
processor_inputs = {
name: inputs_nega.get(name_)
for name, name_ in unit.input_params_nega.items()
}
if unit.input_params is not None:
for name in unit.input_params:
processor_inputs[name] = inputs_shared.get(name)
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_nega.update(processor_outputs)
else:
inputs_nega.update(processor_outputs)
else:
processor_inputs = {
name: inputs_shared.get(name) for name in unit.input_params
}
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_shared.update(processor_outputs)
return inputs_shared, inputs_posi, inputs_nega