Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) Microsoft | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Copyright (c) [2025] [Microsoft] | |
# SPDX-License-Identifier: MIT | |
import torch | |
import torch.nn as nn | |
from . import SparseTensor | |
__all__ = [ | |
'SparseReLU', | |
'SparseSiLU', | |
'SparseGELU', | |
'SparseActivation' | |
] | |
class SparseReLU(nn.ReLU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseSiLU(nn.SiLU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseGELU(nn.GELU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseActivation(nn.Module): | |
def __init__(self, activation: nn.Module): | |
super().__init__() | |
self.activation = activation | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(self.activation(input.feats)) | |