doctorecord / ARCHITECTURE.md
levalencia's picture
feat: enhance architecture and developer documentation for clarity and detail
665cc97
# Architecture Documentation
## System Overview
The Deep-Research PDF Field Extractor is a multi-agent system designed to extract structured data from biotech-related PDFs. The system uses Azure Document Intelligence for document processing and Azure OpenAI for intelligent field extraction.
## Core Architecture
### Multi-Agent Design
The system follows a multi-agent architecture where each agent has a specific responsibility:
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ PDFAgent β”‚ β”‚ TableAgent β”‚ β”‚ IndexAgent β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β€’ PDF Text │───▢│ β€’ Table │───▢│ β€’ Semantic β”‚
β”‚ Extraction β”‚ β”‚ Processing β”‚ β”‚ Indexing β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚UniqueIndices β”‚ β”‚UniqueIndices β”‚ β”‚FieldMapper β”‚
β”‚Combinator β”‚ β”‚LoopAgent β”‚ β”‚Agent β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β€’ Extract │───▢│ β€’ Loop through β”‚ β”‚ β€’ Extract β”‚
β”‚ combinations β”‚ β”‚ combinations β”‚ β”‚ individual β”‚
β”‚ β”‚ β”‚ β€’ Add fields β”‚ β”‚ fields β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
### Execution Flow
#### Original Strategy Flow
```
1. PDFAgent β†’ Extract text from PDF
2. TableAgent β†’ Process tables with Azure DI
3. IndexAgent β†’ Create semantic search index
4. ForEachField β†’ Iterate through fields
5. FieldMapperAgent β†’ Extract each field value
```
#### Unique Indices Strategy Flow
```
1. PDFAgent β†’ Extract text from PDF
2. TableAgent β†’ Process tables with Azure DI
3. UniqueIndicesCombinator β†’ Extract unique combinations
4. UniqueIndicesLoopAgent β†’ Extract additional fields for each combination
```
## Agent Details
### PDFAgent
- **Purpose**: Extract text content from PDF files
- **Technology**: PyMuPDF (fitz)
- **Output**: Raw text content
- **Error Handling**: Graceful handling of corrupted PDFs
### TableAgent
- **Purpose**: Process tables using Azure Document Intelligence
- **Technology**: Azure DI Layout Analysis
- **Features**:
- Table structure preservation
- Rowspan/colspan handling
- HTML table generation for debugging
- **Output**: Processed table data
### UniqueIndicesCombinator
- **Purpose**: Extract unique combinations of specified indices
- **Input**: Document text, unique indices descriptions
- **LLM Prompt**: Structured prompt for combination extraction
- **Output**: JSON array of unique combinations
- **Cost Tracking**: Tracks input/output tokens
### UniqueIndicesLoopAgent
- **Purpose**: Extract additional fields for each unique combination
- **Input**: Unique combinations, field descriptions
- **Process**: Loops through each combination
- **LLM Calls**: One call per combination
- **Error Handling**: Continues with partial failures
- **Output**: Complete data with all fields
### FieldMapperAgent
- **Purpose**: Extract individual field values
- **Strategies**:
- Page-by-page analysis
- Semantic search fallback
- Unique indices strategy
- **Features**: Context-aware extraction
- **Output**: Field values with confidence scores
### IndexAgent
- **Purpose**: Create semantic search indices
- **Technology**: Azure OpenAI Embeddings
- **Features**: Chunk-based indexing
- **Output**: Searchable document index
## Services
### LLMClient
```python
class LLMClient:
def __init__(self, settings):
# Azure OpenAI configuration
self._deployment = settings.AZURE_OPENAI_DEPLOYMENT
self._max_retries = settings.LLM_MAX_RETRIES
self._base_delay = settings.LLM_BASE_DELAY
def responses(self, prompt, **kwargs):
# Retry logic with exponential backoff
# Cost tracking integration
# Error handling
```
**Key Features:**
- Retry logic with exponential backoff
- Cost tracking integration
- Error classification (retryable vs non-retryable)
- Jitter to prevent thundering herd
### CostTracker
```python
class CostTracker:
def __init__(self):
self.llm_calls: List[LLMCall] = []
self.current_file_costs = {}
self.total_costs = {}
def add_llm_tokens(self, input_tokens, output_tokens, description):
# Track individual LLM calls
# Calculate costs
# Store detailed information
```
**Key Features:**
- Individual call tracking
- Cost calculation based on Azure pricing
- Detailed breakdown by operation
- Session and total cost tracking
### AzureDIService
```python
class AzureDIService:
def extract_tables(self, pdf_bytes):
# Azure DI Layout Analysis
# Table structure preservation
# HTML debugging output
```
**Key Features:**
- Layout analysis for complex documents
- Table structure preservation
- Debug output generation
- Error handling for DI operations
## Data Flow
### Context Management
The system uses a context dictionary to pass data between agents:
```python
ctx = {
"pdf_file": pdf_file,
"text": extracted_text,
"fields": field_list,
"unique_indices": unique_indices,
"field_descriptions": field_descriptions,
"cost_tracker": cost_tracker,
"results": [],
"strategy": strategy
}
```
### Result Processing
Results are processed through multiple stages:
1. **Raw Extraction**: LLM responses in JSON format
2. **Validation**: JSON parsing and structure validation
3. **Flattening**: Convert to tabular format
4. **DataFrame**: Final structured output
## Error Handling Strategy
### Retry Logic
```python
def _should_retry(self, exception) -> bool:
# Retry on 5xx errors
if hasattr(exception, 'status_code'):
return exception.status_code >= 500
# Retry on connection errors
return any(error in str(exception) for error in ['Timeout', 'Connection'])
```
### Graceful Degradation
- Continue processing with partial failures
- Return null values for failed extractions
- Log detailed error information
- Maintain cost tracking during failures
### Error Classification
- **Retryable**: 503, 500, connection timeouts
- **Non-retryable**: 400, 401, validation errors
- **Fatal**: Configuration errors, missing dependencies
## Performance Considerations
### Optimization Strategies
1. **Parallel Processing**: Independent field extraction
2. **Caching**: Session state for field descriptions
3. **Batching**: Group similar operations
4. **Early Termination**: Stop on critical failures
### Resource Management
- **Memory**: Efficient text processing
- **API Limits**: Respect Azure rate limits
- **Cost Control**: Detailed tracking and alerts
- **Timeout Handling**: Configurable timeouts
## Security
### Data Protection
- No persistent storage of sensitive data
- Secure API key management
- Session-based data handling
- Log sanitization
### Access Control
- Environment variable configuration
- API key validation
- Error message sanitization
## Monitoring and Observability
### Logging Strategy
```python
# Structured logging with levels
logger.info(f"Processing {len(combinations)} combinations")
logger.debug(f"LLM response: {response[:200]}...")
logger.error(f"Failed to extract field: {field}")
```
### Metrics Collection
- LLM call counts and durations
- Token usage and costs
- Success/failure rates
- Processing times
### Debug Information
- Detailed execution traces
- Cost breakdown tables
- Error context and stack traces
- Performance metrics
## Configuration Management
### Settings Structure
```python
class Settings(BaseSettings):
# Azure OpenAI
AZURE_OPENAI_ENDPOINT: str
AZURE_OPENAI_API_KEY: str
AZURE_OPENAI_DEPLOYMENT: str
# Azure Document Intelligence
AZURE_DI_ENDPOINT: str
AZURE_DI_KEY: str
# Retry Configuration
LLM_MAX_RETRIES: int = 5
LLM_BASE_DELAY: float = 1.0
LLM_MAX_DELAY: float = 60.0
```
### Environment Variables
- `.env` file support
- Environment variable override
- Validation and defaults
- Secure key management
## Testing Strategy
### Unit Tests
- Individual agent testing
- Service layer testing
- Mock external dependencies
- Cost tracking validation
### Integration Tests
- End-to-end workflows
- Error scenario testing
- Performance benchmarking
- Cost accuracy validation
### Test Coverage
- Core functionality: 90%+
- Error handling: 100%
- Cost tracking: 100%
- Retry logic: 100%
## Deployment
### Requirements
- Python 3.9+
- Azure OpenAI access
- Azure Document Intelligence access
- Streamlit for UI
### Dependencies
```
azure-ai-documentintelligence
openai
streamlit
pandas
pymupdf
pydantic-settings
```
### Environment Setup
1. Install dependencies
2. Configure environment variables
3. Set up Azure resources
4. Test connectivity
5. Deploy application
## Future Enhancements
### Planned Features
- **Batch Processing**: Multiple document processing
- **Custom Models**: Domain-specific extraction
- **Advanced Caching**: Redis-based caching
- **API Endpoints**: REST API for integration
- **Real-time Processing**: Streaming document processing
### Scalability Improvements
- **Microservices**: Agent separation
- **Queue System**: Asynchronous processing
- **Load Balancing**: Multiple instances
- **Database Integration**: Persistent storage
### Performance Optimizations
- **Vector Search**: Enhanced semantic search
- **Model Optimization**: Smaller, faster models
- **Parallel Processing**: Multi-threaded extraction
- **Memory Optimization**: Efficient data structures