|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
import tempfile |
|
from dotenv import load_dotenv |
|
from typing import Optional |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
from graph.graph_builder import graph |
|
from langchain_core.messages import HumanMessage |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
def download_file(task_id: str, api_url: str) -> Optional[str]: |
|
""" |
|
Download file associated with a task_id from the evaluation API |
|
|
|
Args: |
|
task_id: The task ID to download file for |
|
api_url: Base API URL |
|
|
|
Returns: |
|
str: Local path to downloaded file, or None if failed |
|
""" |
|
try: |
|
file_url = f"{api_url}/files/{task_id}" |
|
print(f"๐ Downloading file for task {task_id} from {file_url}") |
|
|
|
response = requests.get(file_url, timeout=30) |
|
response.raise_for_status() |
|
|
|
|
|
content_disposition = response.headers.get('Content-Disposition', '') |
|
if 'filename=' in content_disposition: |
|
filename = content_disposition.split('filename=')[1].strip('"') |
|
else: |
|
|
|
content_type = response.headers.get('Content-Type', '') |
|
if 'image' in content_type: |
|
extension = '.jpg' |
|
elif 'audio' in content_type: |
|
extension = '.mp3' |
|
elif 'video' in content_type: |
|
extension = '.mp4' |
|
else: |
|
extension = '.txt' |
|
filename = f"task_{task_id}_file{extension}" |
|
|
|
|
|
temp_dir = tempfile.gettempdir() |
|
file_path = os.path.join(temp_dir, filename) |
|
|
|
with open(file_path, 'wb') as f: |
|
f.write(response.content) |
|
|
|
print(f"โ
File downloaded successfully: {file_path}") |
|
return file_path |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"โ Error downloading file for task {task_id}: {e}") |
|
return None |
|
except Exception as e: |
|
print(f"โ Unexpected error downloading file for task {task_id}: {e}") |
|
return None |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
"""Initialize the LangGraph agent""" |
|
print("LangGraph Agent initialized with multimodal, search, math, and YouTube tools.") |
|
|
|
|
|
if not os.getenv("OPENROUTER_API_KEY"): |
|
raise ValueError("OPENROUTER_API_KEY not found in environment variables") |
|
|
|
|
|
self.graph = graph |
|
print("โ
Agent ready with tools: multimodal, search, math, YouTube") |
|
|
|
def __call__(self, question: str, file_path: Optional[str] = None) -> str: |
|
""" |
|
Process a question using the LangGraph agent and return just the answer |
|
|
|
Args: |
|
question: The question to answer |
|
file_path: Optional path to associated file (image, audio, etc.) |
|
|
|
Returns: |
|
str: The final answer (formatted for evaluation) |
|
""" |
|
print(f"๐ค Processing question: {question[:50]}...") |
|
if file_path: |
|
print(f"๐ Associated file: {file_path}") |
|
|
|
try: |
|
|
|
enhanced_question = question |
|
if file_path: |
|
enhanced_question = f"{question}\n\nFile provided: {file_path}" |
|
print(f"๐ Enhanced question with file reference") |
|
|
|
|
|
initial_state = {"messages": [HumanMessage(content=enhanced_question)]} |
|
|
|
|
|
result = self.graph.invoke(initial_state) |
|
|
|
|
|
final_message = result["messages"][-1] |
|
answer = final_message.content |
|
|
|
|
|
|
|
if isinstance(answer, str): |
|
answer = answer.strip() |
|
|
|
|
|
prefixes_to_remove = [ |
|
"The answer is: ", |
|
"Answer: ", |
|
"The result is: ", |
|
"Result: ", |
|
"The final answer is: ", |
|
"Based on the analysis: ", |
|
"Based on the file: ", |
|
] |
|
|
|
for prefix in prefixes_to_remove: |
|
if answer.startswith(prefix): |
|
answer = answer[len(prefix):].strip() |
|
break |
|
|
|
print(f"โ
Agent answer: {answer}") |
|
return answer |
|
|
|
except Exception as e: |
|
error_msg = f"Error processing question: {str(e)}" |
|
print(f"โ {error_msg}") |
|
return error_msg |
|
finally: |
|
|
|
if file_path and os.path.exists(file_path) and tempfile.gettempdir() in file_path: |
|
try: |
|
os.remove(file_path) |
|
print(f"๐งน Cleaned up temporary file: {file_path}") |
|
except Exception as e: |
|
print(f"โ ๏ธ Could not clean up temporary file: {e}") |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, downloads associated files, runs the BasicAgent on them, |
|
submits all answers, and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
|
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
print(f"\n๐ Processing Task {task_id}") |
|
print(f"Question: {question_text[:100]}...") |
|
if file_name: |
|
print(f"Associated file: {file_name}") |
|
|
|
|
|
downloaded_file_path = None |
|
if file_name: |
|
downloaded_file_path = download_file(task_id, api_url) |
|
if not downloaded_file_path: |
|
print(f"โ ๏ธ Failed to download file for task {task_id}, proceeding without file") |
|
|
|
try: |
|
|
|
submitted_answer = agent(question_text, downloaded_file_path) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"File": file_name if file_name else "None", |
|
"Submitted Answer": submitted_answer |
|
}) |
|
print(f"โ
Task {task_id} completed") |
|
|
|
except Exception as e: |
|
print(f"โ Error running agent on task {task_id}: {e}") |
|
error_answer = f"AGENT ERROR: {e}" |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"File": file_name if file_name else "None", |
|
"Submitted Answer": error_answer |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# LangGraph Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
This space uses a LangGraph agent with multimodal, search, math, and YouTube tools powered by OpenRouter. |
|
|
|
1. Log in to your Hugging Face account using the button below. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
**Agent Capabilities:** |
|
- ๐จ **Multimodal**: Analyze images, extract text (OCR), process audio transcripts |
|
- ๐ **Search**: Web search using multiple providers (DuckDuckGo, Tavily, SerpAPI) |
|
- ๐งฎ **Math**: Basic arithmetic, complex calculations, percentages, factorials |
|
- ๐บ **YouTube**: Extract captions, get video information |
|
- ๐ **File Processing**: Automatically downloads and processes evaluation files |
|
|
|
--- |
|
**Note:** Processing all questions may take some time as the agent carefully analyzes each question and uses appropriate tools. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"โ
SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"โ
SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("โน๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for LangGraph Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|