File size: 49,373 Bytes
e22eb13
7a3f79b
 
 
 
 
62ec987
7a3f79b
 
 
 
 
 
 
 
 
 
62ec987
 
7a3f79b
62ec987
 
7a8bd09
62ec987
 
 
7a3f79b
 
62ec987
7a3f79b
 
 
 
 
 
62ec987
 
 
7a3f79b
 
 
 
 
62ec987
 
 
 
f13d4b2
287c9ca
7a3f79b
 
 
 
62ec987
7a3f79b
62ec987
 
 
 
 
 
 
 
 
d4d0117
 
 
62ec987
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
d4d0117
 
62ec987
d4d0117
7a3f79b
62ec987
 
 
 
 
d4d0117
7a3f79b
62ec987
7a3f79b
 
62ec987
7a3f79b
 
d4d0117
62ec987
 
7a3f79b
7a8bd09
62ec987
 
7a8bd09
62ec987
 
7a8bd09
62ec987
7a8bd09
62ec987
 
7a8bd09
62ec987
7a8bd09
 
 
7a3f79b
62ec987
7a3f79b
7a8bd09
62ec987
 
 
 
 
 
 
7a3f79b
62ec987
 
7a8bd09
7a3f79b
7a8bd09
62ec987
 
7a8bd09
 
62ec987
 
 
7a3f79b
7a8bd09
 
 
62ec987
7a3f79b
7a8bd09
62ec987
 
7a3f79b
62ec987
 
 
 
7a3f79b
7a8bd09
62ec987
7a8bd09
62ec987
 
7a8bd09
62ec987
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
7a3f79b
62ec987
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
7a8bd09
62ec987
 
 
 
 
 
 
7a8bd09
7a3f79b
62ec987
 
 
7a3f79b
7a8bd09
62ec987
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
7a8bd09
62ec987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
 
7a3f79b
62ec987
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
 
 
 
 
 
 
7a3f79b
bf873b0
62ec987
 
 
 
 
 
bf873b0
4e3ee0b
bf873b0
d4d0117
bf873b0
 
 
 
 
 
7a8bd09
8583908
bf873b0
62ec987
 
 
 
 
 
 
 
 
 
 
 
 
d4d0117
62ec987
 
 
d4d0117
62ec987
 
 
 
 
 
d4d0117
62ec987
 
 
 
 
 
 
 
 
 
bf873b0
62ec987
bf873b0
3313da9
d4d0117
bf873b0
 
 
 
cb93f9c
bf873b0
 
7a3f79b
bf873b0
d4d0117
7a3f79b
 
d4d0117
 
 
 
62ec987
 
59af6e7
62ec987
 
d4d0117
 
 
 
 
 
62ec987
d4d0117
 
7a3f79b
bf873b0
 
d4d0117
62ec987
d4d0117
bf873b0
b97795f
d4d0117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
bf873b0
d4d0117
62ec987
 
d4d0117
62ec987
d4d0117
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai # OpenAI v1.x.x+
import requests
import io
import time
import random
import logging

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx

try: # MONKEY PATCH for Pillow/MoviePy compatibility
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
except Exception as e_monkey_patch:
    print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")

logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) # Uncomment for verbose debugging during development

ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components (SDK v1.x.x pattern) imported successfully.")
except ImportError: logger.warning("ElevenLabs SDK not found (expected 'pip install elevenlabs>=1.0.0'). Audio generation will be disabled.")
except Exception as e_eleven_import_general: logger.warning(f"General error importing ElevenLabs client components: {e_eleven_import_general}. Audio generation disabled.")

RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None
try:
    from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
    RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK (runwayml) imported successfully.")
except ImportError: logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk_import_general: logger.warning(f"General error importing RunwayML SDK: {e_runway_sdk_import_general}. RunwayML features disabled.")


class VisualEngine:
    DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20
    VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white'
    DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'

    # <<< THIS IS THE CRITICAL __init__ METHOD THAT MUST BE CORRECT >>>
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        try: # Attempt to create the output directory
            os.makedirs(self.output_dir, exist_ok=True)
            logger.info(f"VisualEngine output directory set/ensured: {os.path.abspath(self.output_dir)}")
        except Exception as e_mkdir:
            logger.error(f"CRITICAL: Failed to create output directory '{self.output_dir}': {e_mkdir}", exc_info=True)
            # Depending on how critical this is, you might raise an exception or set a failure flag
            # For now, we'll log and continue, but writes will fail.

        self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
        font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None)
        
        self.active_font_pil = ImageFont.load_default() # Fallback default
        self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
        self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT

        if self.resolved_font_path_pil:
            try:
                self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL)
                self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
                logger.info(f"Pillow font loaded: {self.resolved_font_path_pil} at size {self.active_font_size_pil}.")
                if "dejavu" in self.resolved_font_path_pil.lower(): self.active_moviepy_font_name = 'DejaVu-Sans-Bold'
                elif "liberation" in self.resolved_font_path_pil.lower(): self.active_moviepy_font_name = 'Liberation-Sans-Bold'
            except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.")
        else: logger.warning("Preferred Pillow font not found. Default.")
        
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id # Use the passed default
        logger.info(f"VisualEngine __init__: ElevenLabs Voice ID initially set to: {self.elevenlabs_voice_id}")

        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings_obj = None
        
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
        
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
            try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
            except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False
        
        logger.info("VisualEngine __init__ sequence complete.")

    def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
    
    def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None): # Accepts voice_id_from_secret
        self.elevenlabs_api_key = api_key_value
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret; logger.info(f"11L Voice ID updated via set_elevenlabs_api_key to: {self.elevenlabs_voice_id}")
        
        if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value); self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance); logger.info(f"11L Client: {'Ready' if self.USE_ELEVENLABS else 'Failed'} (Using Voice: {self.elevenlabs_voice_id})")
            except Exception as e_11l_setkey_init: logger.error(f"11L client init error: {e_11l_setkey_init}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client_instance=None
        else: self.USE_ELEVENLABS = False; logger.info(f"11L Disabled (API key not provided or SDK issue).")
    
    def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
    
    def set_runway_api_key(self, api_key_value):
        self.runway_api_key = api_key_value
        if api_key_value:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
                if not self.runway_ml_sdk_client_instance: # If not already initialized
                    try:
                        original_env_secret = os.getenv("RUNWAYML_API_SECRET")
                        if not original_env_secret: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temporarily set RUNWAYML_API_SECRET from provided key for SDK client init.")
                        self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
                        if not original_env_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temporary RUNWAYML_API_SECRET environment variable.")
                    except Exception as e_runway_setkey_init: logger.error(f"RunwayML Client initialization in set_runway_api_key failed: {e_runway_setkey_init}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None
                else: self.USE_RUNWAYML = True; logger.info("RunwayML Client was already initialized (likely from environment variable). API key stored.")
            else: logger.warning("RunwayML SDK not imported. API key stored, but current integration relies on SDK. Service effectively disabled."); self.USE_RUNWAYML = False
        else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Service Disabled (no API key provided).")

    # --- Helper Methods (_image_to_data_uri, _map_resolution_to_runway_ratio, etc.) ---
    # (These methods should be the corrected versions from our previous iterations)
    def _image_to_data_uri(self, image_path):
        try:
            mime_type, _ = mimetypes.guess_type(image_path)
            if not mime_type: ext = os.path.splitext(image_path)[1].lower(); mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".webp": "image/webp"}; mime_type = mime_map.get(ext, "application/octet-stream");
            if mime_type == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path} from ext '{ext}', using default {mime_type}.")
            with open(image_path, "rb") as image_file_handle: image_binary_data = image_file_handle.read()
            encoded_base64_string = base64.b64encode(image_binary_data).decode('utf-8')
            data_uri_string = f"data:{mime_type};base64,{encoded_base64_string}"; logger.debug(f"Data URI for {os.path.basename(image_path)} (MIME:{mime_type}): {data_uri_string[:100]}..."); return data_uri_string
        except FileNotFoundError: logger.error(f"Img not found {image_path} for data URI."); return None
        except Exception as e: logger.error(f"Error converting {image_path} to data URI:{e}", exc_info=True); return None

    def _map_resolution_to_runway_ratio(self, width, height):
        ratio_str=f"{width}:{height}";supported_ratios_gen4=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
        if ratio_str in supported_ratios_gen4:return ratio_str
        logger.warning(f"Res {ratio_str} not in Gen-4 list. Default 1280:720 for Runway.");return "1280:720"

    def _get_text_dimensions(self, text_content, font_object_pil):
        dch=getattr(font_object_pil,'size',self.active_font_size_pil);
        if not text_content:return 0,dch
        try:
            if hasattr(font_object_pil,'getbbox'):bb=font_object_pil.getbbox(text_content);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else dch
            elif hasattr(font_object_pil,'getsize'):w,h=font_object_pil.getsize(text_content);return w,h if h>0 else dch
            else:return int(len(text_content)*dch*0.6),int(dch*1.2)
        except Exception as e_getdim:logger.warning(f"Error in _get_text_dimensions:{e_getdim}");return int(len(text_content)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2)

    def _create_placeholder_image_content(self,text_description,filename,size=None):
        # (Corrected version from previous responses)
        if size is None: size = self.video_frame_size
        img = Image.new('RGB', size, color=(20, 20, 40)); d_draw = ImageDraw.Draw(img); padding = 25 # Renamed d
        max_w_text = size[0] - (2 * padding); lines_out = [] # Renamed max_w, lines
        if not text_description: text_description = "(Placeholder Image)"
        words_in_desc = text_description.split(); current_line_buf = "" # Renamed words, current_line
        for word_idx_loop, word_val in enumerate(words_in_desc): # Renamed
            prospective_add_str = word_val + (" " if word_idx_loop < len(words_in_desc) - 1 else "")
            test_line_str = current_line_buf + prospective_add_str
            current_w_val, _ = self._get_text_dimensions(test_line_str, self.active_font_pil)
            if current_w_val == 0 and test_line_str.strip(): current_w_val = len(test_line_str) * (self.active_font_size_pil * 0.6)
            if current_w_val <= max_w_text: current_line_buf = test_line_str
            else:
                if current_line_buf.strip(): lines_out.append(current_line_buf.strip())
                current_line_buf = prospective_add_str
        if current_line_buf.strip(): lines_out.append(current_line_buf.strip())
        if not lines_out and text_description:
            avg_char_w_val, _ = self._get_text_dimensions("W", self.active_font_pil); avg_char_w_val = avg_char_w_val or (self.active_font_size_pil * 0.6)
            chars_p_line = int(max_w_text / avg_char_w_val) if avg_char_w_val > 0 else 20
            lines_out.append(text_description[:chars_p_line] + ("..." if len(text_description) > chars_p_line else ""))
        elif not lines_out: lines_out.append("(Placeholder Error)")
        _, single_line_h_val = self._get_text_dimensions("Ay", self.active_font_pil); single_line_h_val = single_line_h_val if single_line_h_val > 0 else self.active_font_size_pil + 2
        max_lines_disp = min(len(lines_out), (size[1] - (2 * padding)) // (single_line_h_val + 2)) if single_line_h_val > 0 else 1; max_lines_disp = max(1, max_lines_disp)
        y_pos_text = padding + (size[1] - (2 * padding) - max_lines_disp * (single_line_h_val + 2)) / 2.0
        for i_ln in range(max_lines_disp): # Renamed
            line_content_str = lines_out[i_ln]; line_w_px, _ = self._get_text_dimensions(line_content_str, self.active_font_pil) # Renamed
            if line_w_px == 0 and line_content_str.strip(): line_w_px = len(line_content_str) * (self.active_font_size_pil * 0.6)
            x_pos_text = (size[0] - line_w_px) / 2.0
            try: d_draw.text((x_pos_text, y_pos_text), line_content_str, font=self.active_font_pil, fill=(200, 200, 180))
            except Exception as e_draw_ph: logger.error(f"Pillow d.text error: {e_draw_ph} for '{line_content_str}'")
            y_pos_text += single_line_h_val + 2
            if i_ln == 6 and max_lines_disp > 7:
                try: d_draw.text((x_pos_text, y_pos_text), "...", font=self.active_font_pil, fill=(200, 200, 180))
                except Exception as e_elps_ph: logger.error(f"Pillow d.text ellipsis error: {e_elps_ph}"); break
        filepath_ph_img = os.path.join(self.output_dir, filename) # Renamed
        try: img.save(filepath_ph_img); return filepath_ph_img
        except Exception as e_save_ph_img: logger.error(f"Saving placeholder image '{filepath_ph_img}' error: {e_save_ph_img}", exc_info=True); return None

    def _search_pexels_image(self, query_str_px, output_fn_base_px): # Renamed
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        http_headers_px = {"Authorization": self.pexels_api_key}
        http_params_px = {"query": query_str_px, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        base_name_for_pexels_img, _ = os.path.splitext(output_fn_base_px) # Renamed
        pexels_filename_output = base_name_for_pexels_img + f"_pexels_{random.randint(1000,9999)}.jpg" # Renamed
        filepath_for_pexels_img = os.path.join(self.output_dir, pexels_filename_output) # Renamed
        try:
            logger.info(f"Pexels: Searching for '{query_str_px}'")
            effective_query_for_pexels = " ".join(query_str_px.split()[:5]) # Renamed
            http_params_px["query"] = effective_query_for_pexels
            response_from_pexels = requests.get("https://api.pexels.com/v1/search", headers=http_headers_px, params=http_params_px, timeout=20) # Renamed
            response_from_pexels.raise_for_status()
            data_from_pexels = response_from_pexels.json() # Renamed
            if data_from_pexels.get("photos") and len(data_from_pexels["photos"]) > 0:
                photo_details_item_px = data_from_pexels["photos"][0] # Renamed
                photo_url_item_px = photo_details_item_px.get("src", {}).get("large2x") # Renamed
                if not photo_url_item_px: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query_for_pexels}'. Details: {photo_details_item_px}"); return None
                image_response_get_px = requests.get(photo_url_item_px, timeout=60); image_response_get_px.raise_for_status() # Renamed
                img_pil_data_from_pexels = Image.open(io.BytesIO(image_response_get_px.content)) # Renamed
                if img_pil_data_from_pexels.mode != 'RGB': img_pil_data_from_pexels = img_pil_data_from_pexels.convert('RGB')
                img_pil_data_from_pexels.save(filepath_for_pexels_img); logger.info(f"Pexels: Image saved to {filepath_for_pexels_img}"); return filepath_for_pexels_img
            else: logger.info(f"Pexels: No photos for '{effective_query_for_pexels}'."); return None
        except requests.exceptions.RequestException as e_req_px_loop: logger.error(f"Pexels: RequestException for '{query_str_px}': {e_req_px_loop}", exc_info=False); return None # Renamed
        except Exception as e_px_gen_loop: logger.error(f"Pexels: General error for '{query_str_px}': {e_px_gen_loop}", exc_info=True); return None # Renamed

    def _generate_video_clip_with_runwayml(self, motion_prompt_rwy, input_img_path_rwy, scene_id_base_fn_rwy, duration_s_rwy=5): # Renamed
        if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None
        if not input_img_path_rwy or not os.path.exists(input_img_path_rwy): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path_rwy}"); return None
        img_data_uri_rwy = self._image_to_data_uri(input_img_path_rwy) # Renamed
        if not img_data_uri_rwy: return None
        rwy_actual_dur = 10 if duration_s_rwy >= 8 else 5; rwy_actual_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1]) # Renamed
        rwy_fn_base, _ = os.path.splitext(scene_id_base_fn_rwy); rwy_output_fn = rwy_fn_base + f"_runway_gen4_d{rwy_actual_dur}s.mp4"; rwy_output_fp = os.path.join(self.output_dir,rwy_output_fn) # Renamed
        logger.info(f"Runway Gen-4 task: motion='{motion_prompt_rwy[:70]}...', img='{os.path.basename(input_img_path_rwy)}', dur={rwy_actual_dur}s, ratio='{rwy_actual_ratio}'")
        try:
            rwy_submitted_task = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri_rwy,prompt_text=motion_prompt_rwy,duration=rwy_actual_dur,ratio=rwy_actual_ratio) # Renamed
            rwy_task_id_val = rwy_submitted_task.id; logger.info(f"Runway task ID: {rwy_task_id_val}. Polling...") # Renamed
            poll_interval_val=10;max_poll_attempts=36;poll_start_timestamp=time.time() # Renamed
            while time.time()-poll_start_timestamp < max_poll_attempts*poll_interval_val:
                time.sleep(poll_interval_val);rwy_task_details_obj=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id_val) # Renamed
                logger.info(f"Runway task {rwy_task_id_val} status: {rwy_task_details_obj.status}")
                if rwy_task_details_obj.status=='SUCCEEDED':
                    rwy_video_output_url=getattr(getattr(rwy_task_details_obj,'output',None),'url',None) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'url')and rwy_task_details_obj.artifacts[0].url) or (getattr(rwy_task_details_obj,'artifacts',None)and r_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'download_url')and rwy_task_details_obj.artifacts[0].download_url) # Renamed r_task_details_obj
                    if not rwy_video_output_url:logger.error(f"Runway task {rwy_task_id_val} SUCCEEDED, no output URL. Details:{vars(rwy_task_details_obj)if hasattr(rwy_task_details_obj,'__dict__')else rwy_task_details_obj}");return None
                    logger.info(f"Runway task {rwy_task_id_val} SUCCEEDED. Downloading: {rwy_video_output_url}")
                    runway_video_response=requests.get(rwy_video_output_url,stream=True,timeout=300);runway_video_response.raise_for_status() # Renamed
                    with open(rwy_output_fp,'wb')as f_out_vid: # Renamed
                        for data_chunk_vid in runway_video_response.iter_content(chunk_size=8192): f_out_vid.write(data_chunk_vid) # Renamed
                    logger.info(f"Runway Gen-4 video saved: {rwy_output_fp}");return rwy_output_fp
                elif rwy_task_details_obj.status in['FAILED','ABORTED','ERROR']:
                    runway_error_detail=getattr(rwy_task_details_obj,'error_message',None)or getattr(getattr(rwy_task_details_obj,'output',None),'error',"Unknown Runway error.") # Renamed
                    logger.error(f"Runway task {rwy_task_id_val} status:{rwy_task_details_obj.status}. Error:{runway_error_detail}");return None
            logger.warning(f"Runway task {rwy_task_id_val} timed out.");return None
        except AttributeError as e_rwy_sdk_attr: logger.error(f"RunwayML SDK AttrError:{e_rwy_sdk_attr}. SDK methods changed?",exc_info=True);return None # Renamed
        except Exception as e_rwy_general: logger.error(f"Runway Gen-4 API error:{e_rwy_general}",exc_info=True);return None # Renamed

    def _create_placeholder_video_content(self, text_description_ph_vid, filename_ph_vid, duration_ph_vid=4, size_ph_vid=None): # Renamed
        if size_ph_vid is None: size_ph_vid = self.video_frame_size
        filepath_ph_vid_out = os.path.join(self.output_dir, filename_ph_vid) # Renamed
        text_clip_object_ph = None  # Renamed
        try:
            text_clip_object_ph = TextClip(text_description_ph_vid, fontsize=50, color='white', font=self.video_overlay_font,
                                bg_color='black', size=size_ph_vid, method='caption').set_duration(duration_ph_vid)
            text_clip_object_ph.write_videofile(filepath_ph_vid_out, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video created: {filepath_ph_vid_out}")
            return filepath_ph_vid_out
        except Exception as e_placeholder_video_creation: 
            logger.error(f"Failed to create generic placeholder video '{filepath_ph_vid_out}': {e_placeholder_video_creation}", exc_info=True)
            return None
        finally:
            if text_clip_object_ph and hasattr(text_clip_object_ph, 'close'):
                try: text_clip_object_ph.close()
                except Exception as e_close_placeholder_clip: logger.warning(f"Ignoring error closing placeholder TextClip: {e_close_placeholder_clip}")
    
    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data_dictionary, scene_identifier_filename_base, # Renamed
                             generate_as_video_clip_bool=False, runway_target_duration_val=5): # Renamed
        # (Logic mostly as before, ensuring base image is robustly generated first)
        # ... (Ensure this method also uses clearly distinct variable names as demonstrated above)
        # ... (The DALL-E loop was corrected in a previous response, ensure that fix is present)
        base_name_current_asset, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info_return_obj = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
        path_to_input_image_for_runway = None
        filename_for_base_image_output = base_name_current_asset + ("_base_for_video.png" if generate_as_video_clip_bool else ".png")
        filepath_for_base_image_output = os.path.join(self.output_dir, filename_for_base_image_output)
        
        # Base Image Generation (DALL-E -> Pexels -> Placeholder)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries_dalle, current_attempt_dalle = 2,0;
            for idx_dalle_attempt in range(max_retries_dalle): # Renamed att_n_dalle
                current_attempt_dalle = idx_dalle_attempt + 1
                try: 
                    logger.info(f"Att {current_attempt_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}...");
                    dalle_client = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);
                    dalle_response = dalle_client.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");
                    dalle_image_url = dalle_response.data[0].url;
                    dalle_revised_prompt = getattr(dalle_response.data[0],'revised_prompt',None);
                    if dalle_revised_prompt: logger.info(f"DALL-E revised: {dalle_revised_prompt[:70]}...")
                    dalle_image_get_response = requests.get(dalle_image_url,timeout=120); dalle_image_get_response.raise_for_status();
                    dalle_pil_image = Image.open(io.BytesIO(dalle_image_get_response.content));
                    if dalle_pil_image.mode!='RGB': dalle_pil_image=dalle_pil_image.convert('RGB')
                    dalle_pil_image.save(filepath_for_base_image_output); logger.info(f"DALL-E base img saved: {filepath_for_base_image_output}");
                    path_to_input_image_for_runway=filepath_for_base_image_output;
                    asset_info_return_obj={'path':filepath_for_base_image_output,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':dalle_revised_prompt};
                    break 
                except openai.RateLimitError as e_dalle_rl: logger.warning(f"OpenAI RateLimit Att {current_attempt_dalle}:{e_dalle_rl}.Retry...");time.sleep(5*current_attempt_dalle);asset_info_return_obj['error_message']=str(e_dalle_rl)
                except openai.APIError as e_dalle_api: logger.error(f"OpenAI APIError Att {current_attempt_dalle}:{e_dalle_api}");asset_info_return_obj['error_message']=str(e_dalle_api);break
                except requests.exceptions.RequestException as e_dalle_req: logger.error(f"Requests Err DALL-E Att {current_attempt_dalle}:{e_dalle_req}");asset_info_return_obj['error_message']=str(e_dalle_req);break
                except Exception as e_dalle_gen: logger.error(f"General DALL-E Err Att {current_attempt_dalle}:{e_dalle_gen}",exc_info=True);asset_info_return_obj['error_message']=str(e_dalle_gen);break
            if asset_info_return_obj['error']: logger.warning(f"DALL-E failed after {current_attempt_dalle} attempts for base img.")
        
        if asset_info_return_obj['error'] and self.USE_PEXELS:
            logger.info("Trying Pexels for base img.");
            pexels_query_text_val = scene_data_dictionary.get('pexels_search_query_๊ฐ๋…',f"{scene_data_dictionary.get('emotional_beat','')} {scene_data_dictionary.get('setting_description','')}");
            pexels_path_result = self._search_pexels_image(pexels_query_text_val, filename_for_base_image_output);
            if pexels_path_result:path_to_input_image_for_runway=pexels_path_result;asset_info_return_obj={'path':pexels_path_result,'type':'image','error':False,'prompt_used':f"Pexels:{pexels_query_text_val}"}
            else:current_error_msg_pexels=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_pexels+" Pexels failed for base.").strip()

        if asset_info_return_obj['error']:
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");
            placeholder_prompt_text_val =asset_info_return_obj.get('prompt_used',image_generation_prompt_text);
            placeholder_path_result=self._create_placeholder_image_content(f"[Base Placeholder]{placeholder_prompt_text_val[:70]}...",filename_for_base_image_output);
            if placeholder_path_result:path_to_input_image_for_runway=placeholder_path_result;asset_info_return_obj={'path':placeholder_path_result,'type':'image','error':False,'prompt_used':placeholder_prompt_text_val}
            else:current_error_msg_ph=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_ph+" Base placeholder failed.").strip()

        if generate_as_video_clip_bool: # Attempt RunwayML if requested
            if not path_to_input_image_for_runway:logger.error("RunwayML video: base img failed completely.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"")+" Base img entirely miss, Runway abort.").strip();asset_info_return_obj['type']='none';return asset_info_return_obj
            if self.USE_RUNWAYML:
                runway_generated_video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_to_input_image_for_runway,asset_base_name,runway_target_duration_val)
                if runway_generated_video_path and os.path.exists(runway_generated_video_path):asset_info_return_obj={'path':runway_generated_video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_to_input_image_for_runway}
                else:logger.warning(f"RunwayML video failed for {asset_base_name}. Fallback to base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
            else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
        return asset_info_return_obj

    def generate_narration_audio(self, narration_text, output_fn="narration_overall.mp3"):
        # (Corrected version from previous response)
        if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not narration_text: logger.info("11L conditions not met. Skip audio."); return None
        narration_fp = os.path.join(self.output_dir, output_fn)
        try:
            logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): \"{narration_text[:70]}...\"")
            stream_method = None
            if hasattr(self.elevenlabs_client_instance,'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech,'stream'): stream_method=self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client_instance,'generate_stream'): stream_method=self.elevenlabs_client_instance.generate_stream; logger.info("Using 11L .generate_stream()")
            elif hasattr(self.elevenlabs_client_instance,'generate'):
                logger.info("Using 11L .generate() (non-streaming).")
                voice_p = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings_obj) if Voice and self.elevenlabs_voice_settings_obj else str(self.elevenlabs_voice_id)
                audio_b = self.elevenlabs_client_instance.generate(text=narration_text,voice=voice_p,model="eleven_multilingual_v2")
                with open(narration_fp,"wb") as f_audio: f_audio.write(audio_b); logger.info(f"11L audio (non-stream): {narration_fp}"); return narration_fp
            else: logger.error("No recognized 11L audio method."); return None
            if stream_method:
                voice_stream_params={"voice_id":str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings_obj:
                    if hasattr(self.elevenlabs_voice_settings_obj,'model_dump'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings_obj,'dict'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.dict()
                    else: voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj
                audio_iter = stream_method(text=narration_text,model_id="eleven_multilingual_v2",**voice_stream_params)
                with open(narration_fp,"wb") as f_audio_stream:
                    for chunk_item in audio_iter:
                        if chunk_item: f_audio_stream.write(chunk_item)
                logger.info(f"11L audio (stream): {narration_fp}"); return narration_fp
        except AttributeError as e_11l_attr: logger.error(f"11L SDK AttrError: {e_11l_attr}. SDK/methods changed?", exc_info=True); return None
        except Exception as e_11l_gen: logger.error(f"11L audio gen error: {e_11l_gen}", exc_info=True); return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        # (Keep the version with robust image processing, C-contiguous array, debug saves, and pix_fmt)
        # This method needs careful review for the blank video issue if it persists after __init__ is fixed.
        # The version from the response addressing "the video is not working and the image" (ID: ZZr1...)
        # contained detailed Pillow debugging and the attempt to use ImageClip(filename) directly.
        # That is the version that should be here. For brevity, I'm not pasting its full 200+ lines again
        # but it's crucial that the robust version is used.
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")

        for i_asset, asset_info_item_loop in enumerate(asset_data_list):
            path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
            num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
            logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")
            if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
            if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
            active_scene_clip = None
            try:
                if type_of_asset == 'image':
                    opened_pil_img = Image.open(path_of_asset); logger.debug(f"S{num_of_scene}: Loaded img. Mode:{opened_pil_img.mode}, Size:{opened_pil_img.size}")
                    debug_original_path = os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png"); opened_pil_img.save(debug_original_path)
                    converted_img_rgba = opened_pil_img.convert('RGBA') if opened_pil_img.mode != 'RGBA' else opened_pil_img.copy().convert('RGBA')
                    debug_rgba_path = os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png"); converted_img_rgba.save(debug_rgba_path)
                    thumbnailed_img = converted_img_rgba.copy(); resample_f = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img.thumbnail(self.video_frame_size,resample_f)
                    debug_thumb_path = os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png"); thumbnailed_img.save(debug_thumb_path)
                    rgba_canvas = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); pos_x,pos_y=(self.video_frame_size[0]-thumbnailed_img.width)//2,(self.video_frame_size[1]-thumbnailed_img.height)//2
                    rgba_canvas.paste(thumbnailed_img,(pos_x,pos_y),thumbnailed_img)
                    debug_composite_rgba_path = os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png"); rgba_canvas.save(debug_composite_rgba_path)
                    final_rgb_img_pil = Image.new("RGB",self.video_frame_size,(0,0,0));
                    if rgba_canvas.mode == 'RGBA': final_rgb_img_pil.paste(rgba_canvas,mask=rgba_canvas.split()[3])
                    else: final_rgb_img_pil.paste(rgba_canvas)
                    debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); final_rgb_img_pil.save(debug_path_img_pre_numpy); logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} to {debug_path_img_pre_numpy}")
                    
                    # Option A: Use the saved, processed image file for ImageClip
                    logger.info(f"S{num_of_scene}: Attempting ImageClip FROM FILE: {debug_path_img_pre_numpy}")
                    base_image_clip = ImageClip(debug_path_img_pre_numpy, transparent=False).set_duration(duration_for_scene)

                    # Option B: Use NumPy array (uncomment to test if file method fails, or vice-versa)
                    # numpy_frame_arr = np.array(final_rgb_img_pil,dtype=np.uint8);
                    # if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr=np.ascontiguousarray(numpy_frame_arr,dtype=np.uint8)
                    # logger.debug(f"S{num_of_scene}: NumPy for MoviePy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, C-Contig:{numpy_frame_arr.flags['C_CONTIGUOUS']}")
                    # if numpy_frame_arr.size==0 or numpy_frame_arr.ndim!=3 or numpy_frame_arr.shape[2]!=3: logger.error(f"S{num_of_scene}: Invalid NumPy array for MoviePy. Skip."); continue
                    # base_image_clip = ImageClip(numpy_frame_arr,transparent=False, ismask=False).set_duration(duration_for_scene)
                    
                    logger.debug(f"S{num_of_scene}: Base ImageClip created. Duration: {base_image_clip.duration}")
                    debug_path_moviepy_frame=os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png");
                    try: base_image_clip.save_frame(debug_path_moviepy_frame,t=min(0.1, base_image_clip.duration/2 if base_image_clip.duration > 0 else 0.1)); logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip S{num_of_scene} to {debug_path_moviepy_frame}")
                    except Exception as e_save_frame: logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_frame}", exc_info=True)
                    
                    fx_image_clip = base_image_clip
                    try: scale_end_kb=random.uniform(1.03,1.08); 
                    if duration_for_scene > 0: fx_image_clip=base_image_clip.fx(vfx.resize,lambda t_val:1+(scale_end_kb-1)*(t_val/duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene}: Ken Burns applied.")
                    except Exception as e_kb_fx: logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx}",exc_info=False)
                    active_scene_clip = fx_image_clip
                elif type_of_asset == 'video':
                    # (Video processing logic as before)
                    source_video_clip_obj=None
                    try:
                        logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}")
                        source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        temp_video_clip_obj_loop=source_video_clip_obj
                        if source_video_clip_obj.duration!=duration_for_scene:
                            if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
                            else:
                                if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
                                else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
                        active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
                        if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
                        logger.debug(f"S{num_of_scene}: Video asset processed. Final duration for scene: {active_scene_clip.duration:.2f}s")
                    except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
                    finally:
                        if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):
                            try: source_video_clip_obj.close()
                            except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}")
                else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue
                
                if active_scene_clip and action_in_key: # Text Overlay
                    try:
                        dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else (active_scene_clip.duration if active_scene_clip.duration > 0 else 0)
                        start_text_overlay_val=0.25 if active_scene_clip.duration > 0.5 else 0
                        if dur_text_overlay_val > 0:
                            text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True)
                            active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True)
                            logger.debug(f"S{num_of_scene}: Text overlay composited.")
                        else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.")
                    except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True)
                
                if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.")
            except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True)
            finally:
                if active_scene_clip and hasattr(active_scene_clip,'close'):
                    try: active_scene_clip.close()
                    except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}")
        
        if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None
        transition_duration_val=0.75
        try:
            logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic.");
            if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose")
            elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0]
            if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None
            logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s")
            if transition_duration_val > 0 and final_video_output_clip.duration > 0:
                if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
                else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
                logger.debug("Applied fade in/out effects to final composite clip.")
            if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0:
                try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.")
                except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True)
            elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.")
            if final_video_output_clip and final_video_output_clip.duration > 0:
                final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)")
                num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2
                final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str
            else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None
        except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
            all_clips_for_closure = processed_moviepy_clips_list[:]
            if narration_audio_clip_mvpy and hasattr(narration_audio_clip_mvpy, 'close'): all_clips_for_closure.append(narration_audio_clip_mvpy) # Check hasattr before append
            if final_video_output_clip and hasattr(final_video_output_clip, 'close'): all_clips_for_closure.append(final_video_output_clip)
            for clip_to_close_item_final in all_clips_for_closure:
                if clip_to_close_item_final and hasattr(clip_to_close_item_final, 'close'): # Double check before closing
                    try: clip_to_close_item_final.close()
                    except Exception as e_final_clip_close_op: logger.warning(f"Ignoring error while closing a MoviePy clip ({type(clip_to_close_item_final).__name__}): {e_final_clip_close_op}")