File size: 49,881 Bytes
e22eb13
7a3f79b
 
 
 
 
940b1d9
7a3f79b
 
 
 
 
 
 
 
 
 
940b1d9
 
7a3f79b
940b1d9
62ec987
7a8bd09
b2b5e0a
 
7a3f79b
 
940b1d9
7a3f79b
 
 
 
 
 
b2b5e0a
 
7a3f79b
 
 
 
 
b2b5e0a
 
f13d4b2
940b1d9
287c9ca
7a3f79b
 
 
 
940b1d9
7a3f79b
62ec987
b2b5e0a
62ec987
 
940b1d9
 
 
 
 
 
 
 
 
62ec987
d4d0117
940b1d9
 
 
 
 
 
 
7a3f79b
62ec987
 
 
 
b2b5e0a
940b1d9
 
62ec987
d4d0117
7a3f79b
940b1d9
62ec987
940b1d9
62ec987
940b1d9
d4d0117
7a3f79b
940b1d9
7a3f79b
 
940b1d9
7a3f79b
940b1d9
 
 
 
7a3f79b
7a8bd09
940b1d9
b2b5e0a
7a8bd09
62ec987
940b1d9
7a8bd09
940b1d9
 
 
 
7a8bd09
940b1d9
7a8bd09
 
 
7a3f79b
940b1d9
7a3f79b
940b1d9
 
62ec987
940b1d9
 
62ec987
 
 
7a3f79b
940b1d9
 
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
 
7a3f79b
940b1d9
 
 
 
7a3f79b
940b1d9
 
 
7a3f79b
940b1d9
 
 
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
940b1d9
7a3f79b
940b1d9
 
 
 
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
b2b5e0a
940b1d9
62ec987
 
b2b5e0a
62ec987
b2b5e0a
 
62ec987
7a3f79b
b2b5e0a
 
 
62ec987
b2b5e0a
62ec987
 
b2b5e0a
62ec987
 
b2b5e0a
 
 
62ec987
 
b2b5e0a
62ec987
 
b2b5e0a
 
7a3f79b
940b1d9
 
 
b2b5e0a
7a8bd09
940b1d9
 
 
 
 
62ec987
940b1d9
7a8bd09
7a3f79b
62ec987
 
 
7a3f79b
7a8bd09
b2b5e0a
 
940b1d9
b2b5e0a
62ec987
 
b2b5e0a
62ec987
7a3f79b
62ec987
b2b5e0a
62ec987
7a8bd09
b2b5e0a
 
 
 
 
62ec987
 
 
 
 
 
b2b5e0a
62ec987
 
 
b2b5e0a
62ec987
 
b2b5e0a
 
7a3f79b
b2b5e0a
62ec987
b2b5e0a
62ec987
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f79b
940b1d9
 
 
 
 
 
 
 
 
 
7a3f79b
bf873b0
 
4e3ee0b
bf873b0
d4d0117
bf873b0
 
 
 
b2b5e0a
bf873b0
 
b2b5e0a
7a8bd09
8583908
bf873b0
b2b5e0a
 
 
 
 
 
 
 
 
d4d0117
940b1d9
b2b5e0a
 
 
d4d0117
b2b5e0a
 
 
 
940b1d9
b2b5e0a
 
 
 
 
 
62ec987
b2b5e0a
940b1d9
b2b5e0a
 
 
 
 
bf873b0
 
3313da9
d4d0117
bf873b0
 
 
 
cb93f9c
bf873b0
 
7a3f79b
bf873b0
b2b5e0a
7a3f79b
 
d4d0117
 
 
 
940b1d9
59af6e7
62ec987
 
d4d0117
 
 
 
 
 
 
 
7a3f79b
bf873b0
 
d4d0117
62ec987
d4d0117
bf873b0
b97795f
d4d0117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
bf873b0
d4d0117
b2b5e0a
62ec987
d4d0117
b2b5e0a
d4d0117
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai # OpenAI v1.x.x+
import requests
import io
import time
import random
import logging

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx

try: # MONKEY PATCH for Pillow/MoviePy compatibility
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling or ANTIALIAS. MoviePy effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")

logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) # Uncomment for maximum verbosity during active debugging

ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.")

RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None
try:
    from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
    RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK imported.")
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.")


class VisualEngine:
    DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20
    VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white'
    DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'

    # <<< CRITICAL __init__ METHOD - ENSURE IT MATCHES THIS >>>
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        try:
            os.makedirs(self.output_dir, exist_ok=True)
            logger.info(f"VisualEngine output directory set/ensured: {os.path.abspath(self.output_dir)}")
            # Test writability immediately
            test_file_path = os.path.join(self.output_dir, ".ve_write_test.txt")
            with open(test_file_path, "w") as f_test:
                f_test.write("VisualEngine write test OK")
            os.remove(test_file_path)
            logger.info(f"Write test to output directory '{self.output_dir}' successful.")
        except Exception as e_mkdir_init: # More specific exception catching
            logger.critical(f"CRITICAL FAILURE: Could not create or write to output directory '{os.path.abspath(self.output_dir)}': {e_mkdir_init}", exc_info=True)
            raise OSError(f"VisualEngine failed to initialize output directory '{self.output_dir}'. Check permissions and path.") from e_mkdir_init

        self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.resolved_font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        
        self.active_font_pil = ImageFont.load_default() 
        self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
        self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT

        if self.resolved_font_path_pil:
            try:
                self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL)
                self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
                logger.info(f"Pillow font loaded: {self.resolved_font_path_pil} at size {self.active_font_size_pil}.")
                self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT)
            except IOError as e_font_load: logger.error(f"Pillow font IOError for '{self.resolved_font_path_pil}': {e_font_load}. Using default.")
        else: logger.warning("Preferred Pillow font not found in predefined paths. Using default.")
        
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id 
        logger.info(f"VisualEngine __init__: ElevenLabs Voice ID initially set to: {self.elevenlabs_voice_id}")

        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings_obj = None
        
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
        
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
            try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var at startup.")
            except Exception as e_rwy_init_constructor: logger.error(f"Initial RunwayML client initialization via env var failed: {e_rwy_init_constructor}"); self.USE_RUNWAYML = False
        
        logger.info("VisualEngine __init__ sequence fully completed.")

    def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
    
    def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None):
        self.elevenlabs_api_key = api_key_value
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret; logger.info(f"11L Voice ID updated via set_elevenlabs_api_key to: {self.elevenlabs_voice_id}")
        
        if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value); self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance); logger.info(f"11L Client: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice: {self.elevenlabs_voice_id})")
            except Exception as e_11l_setkey_init: logger.error(f"11L client initialization error: {e_11l_setkey_init}. Service Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client_instance=None
        else: self.USE_ELEVENLABS = False; logger.info(f"11L Service Disabled (API key not provided or SDK component issue).")
    
    def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
    
    def set_runway_api_key(self, api_key_value):
        self.runway_api_key = api_key_value
        if api_key_value:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
                if not self.runway_ml_sdk_client_instance: # If not already initialized by env var
                    try:
                        original_env_secret_val = os.getenv("RUNWAYML_API_SECRET") # Renamed
                        if not original_env_secret_val: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temporarily set RUNWAYML_API_SECRET from provided key for SDK client init.")
                        self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
                        if not original_env_secret_val: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temporary RUNWAYML_API_SECRET environment variable.")
                    except Exception as e_runway_setkey_init_local: logger.error(f"RunwayML Client initialization in set_runway_api_key failed: {e_runway_setkey_init_local}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None # Renamed
                else: self.USE_RUNWAYML = True; logger.info("RunwayML Client was already initialized (likely from environment variable). API key stored.")
            else: logger.warning("RunwayML SDK not imported. API key stored, but current integration relies on SDK. Service effectively disabled."); self.USE_RUNWAYML = False
        else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Service Disabled (no API key provided).")

    # --- Helper Methods (_image_to_data_uri, _map_resolution_to_runway_ratio, etc.) ---
    # (These should be the corrected versions from previous iterations)
    def _image_to_data_uri(self, image_path_in): # Renamed image_path
        try:
            mime_type_val, _ = mimetypes.guess_type(image_path_in) # Renamed
            if not mime_type_val:
                file_ext = os.path.splitext(image_path_in)[1].lower() # Renamed
                mime_type_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg", ".webp": "image/webp"} # Renamed
                mime_type_val = mime_type_map.get(file_ext, "application/octet-stream")
                if mime_type_val == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path_in} from ext '{file_ext}', using default {mime_type_val}.")
            with open(image_path_in, "rb") as img_file_handle: img_binary_data = img_file_handle.read() # Renamed
            encoded_b64_str = base64.b64encode(img_binary_data).decode('utf-8') # Renamed
            final_data_uri = f"data:{mime_type_val};base64,{encoded_b64_str}"; logger.debug(f"Data URI for {os.path.basename(image_path_in)} (MIME:{mime_type_val}): {final_data_uri[:100]}..."); return final_data_uri # Renamed
        except FileNotFoundError: logger.error(f"Img not found {image_path_in} for data URI."); return None
        except Exception as e_to_data_uri: logger.error(f"Error converting {image_path_in} to data URI:{e_to_data_uri}", exc_info=True); return None # Renamed

    def _map_resolution_to_runway_ratio(self, width_in, height_in): # Renamed
        ratio_string = f"{width_in}:{height_in}"; supported_ratios = ["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"]; # Renamed
        if ratio_string in supported_ratios: return ratio_string
        logger.warning(f"Res {ratio_string} not in Gen-4 list. Default 1280:720 for Runway."); return "1280:720"

    def _get_text_dimensions(self, text_str, font_pil_obj): # Renamed
        def_h = getattr(font_pil_obj, 'size', self.active_font_size_pil);
        if not text_str: return 0, def_h
        try:
            if hasattr(font_pil_obj,'getbbox'): box = font_pil_obj.getbbox(text_str); w_val=box[2]-box[0]; h_val=box[3]-box[1]; return w_val, h_val if h_val > 0 else def_h # Renamed
            elif hasattr(font_pil_obj,'getsize'): w_val,h_val=font_pil_obj.getsize(text_str); return w_val, h_val if h_val > 0 else def_h # Renamed
            else: return int(len(text_str)*def_h*0.6), int(def_h*1.2)
        except Exception as e_get_dim: logger.warning(f"Error in _get_text_dimensions: {e_get_dim}"); return int(len(text_str)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2) # Renamed

    def _create_placeholder_image_content(self,text_desc_val, filename_val, size_val=None): # Renamed
        # (Corrected version from previous responses)
        if size_val is None: size_val = self.video_frame_size
        placeholder_img = Image.new('RGB', size_val, color=(20, 20, 40)); placeholder_draw = ImageDraw.Draw(placeholder_img); ph_padding = 25 # Renamed
        ph_max_w = size_val[0] - (2 * ph_padding); ph_lines = []
        if not text_desc_val: text_desc_val = "(Placeholder Image)"
        ph_words = text_desc_val.split(); ph_current_line = ""
        for ph_word_idx, ph_word in enumerate(ph_words):
            ph_prosp_add = ph_word + (" " if ph_word_idx < len(ph_words) - 1 else "")
            ph_test_line = ph_current_line + ph_prosp_add
            ph_curr_w, _ = self._get_text_dimensions(ph_test_line, self.active_font_pil)
            if ph_curr_w == 0 and ph_test_line.strip(): ph_curr_w = len(ph_test_line) * (self.active_font_size_pil * 0.6)
            if ph_curr_w <= ph_max_w: ph_current_line = ph_test_line
            else:
                if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
                ph_current_line = ph_prosp_add
        if ph_current_line.strip(): ph_lines.append(ph_current_line.strip())
        if not ph_lines and text_desc_val:
            ph_avg_char_w, _ = self._get_text_dimensions("W", self.active_font_pil); ph_avg_char_w = ph_avg_char_w or (self.active_font_size_pil * 0.6)
            ph_chars_line = int(ph_max_w / ph_avg_char_w) if ph_avg_char_w > 0 else 20
            ph_lines.append(text_desc_val[:ph_chars_line] + ("..." if len(text_desc_val) > ph_chars_line else ""))
        elif not ph_lines: ph_lines.append("(Placeholder Error)")
        _, ph_single_h = self._get_text_dimensions("Ay", self.active_font_pil); ph_single_h = ph_single_h if ph_single_h > 0 else self.active_font_size_pil + 2
        ph_max_l = min(len(ph_lines), (size_val[1] - (2 * ph_padding)) // (ph_single_h + 2)) if ph_single_h > 0 else 1; ph_max_l = max(1, ph_max_l)
        ph_y_pos = ph_padding + (size_val[1] - (2 * ph_padding) - ph_max_l * (ph_single_h + 2)) / 2.0
        for ph_i_line in range(ph_max_l):
            ph_line_txt = ph_lines[ph_i_line]; ph_line_w, _ = self._get_text_dimensions(ph_line_txt, self.active_font_pil)
            if ph_line_w == 0 and ph_line_txt.strip(): ph_line_w = len(ph_line_txt) * (self.active_font_size_pil * 0.6)
            ph_x_pos = (size_val[0] - ph_line_w) / 2.0
            try: placeholder_draw.text((ph_x_pos, ph_y_pos), ph_line_txt, font=self.active_font_pil, fill=(200, 200, 180))
            except Exception as e_ph_draw: logger.error(f"Pillow d.text error: {e_ph_draw} for '{ph_line_txt}'")
            ph_y_pos += ph_single_h + 2
            if ph_i_line == 6 and ph_max_l > 7:
                try: placeholder_draw.text((ph_x_pos, ph_y_pos), "...", font=self.active_font_pil, fill=(200, 200, 180))
                except Exception as e_ph_elip: logger.error(f"Pillow d.text ellipsis error: {e_ph_elip}"); break
        ph_filepath = os.path.join(self.output_dir, filename_val)
        try: placeholder_img.save(ph_filepath); return ph_filepath
        except Exception as e_ph_save: logger.error(f"Saving placeholder image '{ph_filepath}' error: {e_ph_save}", exc_info=True); return None

    def _search_pexels_image(self, pexels_query, pexels_output_fn_base): # Renamed
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        pexels_headers = {"Authorization": self.pexels_api_key}
        pexels_params = {"query": pexels_query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        pexels_base_name, _ = os.path.splitext(pexels_output_fn_base)
        pexels_output_filename = pexels_base_name + f"_pexels_{random.randint(1000,9999)}.jpg"
        pexels_filepath = os.path.join(self.output_dir, pexels_output_filename)
        try:
            logger.info(f"Pexels: Searching for '{pexels_query}'")
            pexels_eff_query = " ".join(pexels_query.split()[:5])
            pexels_params["query"] = pexels_eff_query
            pexels_response = requests.get("https://api.pexels.com/v1/search", headers=pexels_headers, params=pexels_params, timeout=20)
            pexels_response.raise_for_status()
            pexels_data = pexels_response.json()
            if pexels_data.get("photos") and len(pexels_data["photos"]) > 0:
                pexels_photo_details = pexels_data["photos"][0]
                pexels_photo_url = pexels_photo_details.get("src", {}).get("large2x")
                if not pexels_photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{pexels_eff_query}'. Details: {pexels_photo_details}"); return None
                pexels_image_response = requests.get(pexels_photo_url, timeout=60); pexels_image_response.raise_for_status()
                pexels_img_pil_data = Image.open(io.BytesIO(pexels_image_response.content))
                if pexels_img_pil_data.mode != 'RGB': pexels_img_pil_data = pexels_img_pil_data.convert('RGB')
                pexels_img_pil_data.save(pexels_filepath); logger.info(f"Pexels: Image saved to {pexels_filepath}"); return pexels_filepath
            else: logger.info(f"Pexels: No photos for '{pexels_eff_query}'."); return None
        except requests.exceptions.RequestException as e_pexels_req: logger.error(f"Pexels: RequestException for '{pexels_query}': {e_pexels_req}", exc_info=False); return None
        except Exception as e_pexels_general: logger.error(f"Pexels: General error for '{pexels_query}': {e_pexels_general}", exc_info=True); return None

    # ... (Rest of methods: _generate_video_clip_with_runwayml, generate_scene_asset, generate_narration_audio, assemble_animatic_from_assets)
    # Ensure these are taken from the last fully corrected versions provided, paying close attention to their specific fixes.
    # For example, generate_narration_audio had its own try-except fix.
    # assemble_animatic_from_assets had extensive debugging for image corruption.

    # For brevity, I will paste the corrected generate_narration_audio and the
    # structure for generate_scene_asset and assemble_animatic_from_assets.
    # You MUST ensure the internal logic of generate_scene_asset and assemble_animatic_from_assets
    # matches the last "expert" versions that included detailed debugging for image/video issues.

    def _generate_video_clip_with_runwayml(self, motion_prompt_rwy, input_img_path_rwy, scene_id_base_fn_rwy, duration_s_rwy=5):
        # (Keep robust RunwayML logic from before, with proper SDK client instance: self.runway_ml_sdk_client_instance)
        if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None
        if not input_img_path_rwy or not os.path.exists(input_img_path_rwy): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path_rwy}"); return None
        img_data_uri_rwy = self._image_to_data_uri(input_img_path_rwy)
        if not img_data_uri_rwy: return None
        rwy_actual_dur = 10 if duration_s_rwy >= 8 else 5; rwy_actual_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1])
        rwy_fn_base, _ = os.path.splitext(scene_id_base_fn_rwy); rwy_output_fn = rwy_fn_base + f"_runway_gen4_d{rwy_actual_dur}s.mp4"; rwy_output_fp = os.path.join(self.output_dir,rwy_output_fn)
        logger.info(f"Runway Gen-4 task: motion='{motion_prompt_rwy[:70]}...', img='{os.path.basename(input_img_path_rwy)}', dur={rwy_actual_dur}s, ratio='{rwy_actual_ratio}'")
        try:
            rwy_submitted_task = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri_rwy,prompt_text=motion_prompt_rwy,duration=rwy_actual_dur,ratio=rwy_actual_ratio)
            rwy_task_id_val = rwy_submitted_task.id; logger.info(f"Runway task ID: {rwy_task_id_val}. Polling...")
            poll_interval_val=10;max_poll_attempts=36;poll_start_timestamp=time.time()
            while time.time()-poll_start_timestamp < max_poll_attempts*poll_interval_val:
                time.sleep(poll_interval_val);rwy_task_details_obj=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id_val)
                logger.info(f"Runway task {rwy_task_id_val} status: {rwy_task_details_obj.status}")
                if rwy_task_details_obj.status=='SUCCEEDED':
                    rwy_video_output_url=getattr(getattr(rwy_task_details_obj,'output',None),'url',None) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'url')and rwy_task_details_obj.artifacts[0].url) or (getattr(rwy_task_details_obj,'artifacts',None)and rwy_task_details_obj.artifacts and hasattr(rwy_task_details_obj.artifacts[0],'download_url')and rwy_task_details_obj.artifacts[0].download_url)
                    if not rwy_video_output_url:logger.error(f"Runway task {rwy_task_id_val} SUCCEEDED, no output URL. Details:{vars(rwy_task_details_obj)if hasattr(rwy_task_details_obj,'__dict__')else rwy_task_details_obj}");return None
                    logger.info(f"Runway task {rwy_task_id_val} SUCCEEDED. Downloading: {rwy_video_output_url}")
                    runway_video_response=requests.get(rwy_video_output_url,stream=True,timeout=300);runway_video_response.raise_for_status()
                    with open(rwy_output_fp,'wb')as f_out_vid:
                        for data_chunk_vid in runway_video_response.iter_content(chunk_size=8192): f_out_vid.write(data_chunk_vid)
                    logger.info(f"Runway Gen-4 video saved: {rwy_output_fp}");return rwy_output_fp
                elif rwy_task_details_obj.status in['FAILED','ABORTED','ERROR']:
                    runway_error_detail=getattr(rwy_task_details_obj,'error_message',None)or getattr(getattr(rwy_task_details_obj,'output',None),'error',"Unknown Runway error.")
                    logger.error(f"Runway task {rwy_task_id_val} status:{rwy_task_details_obj.status}. Error:{runway_error_detail}");return None
            logger.warning(f"Runway task {rwy_task_id_val} timed out.");return None
        except AttributeError as e_rwy_sdk_attr: logger.error(f"RunwayML SDK AttrError:{e_rwy_sdk_attr}. SDK methods changed?",exc_info=True);return None
        except Exception as e_rwy_general: logger.error(f"Runway Gen-4 API error:{e_rwy_general}",exc_info=True);return None

    def _create_placeholder_video_content(self, text_desc_ph_vid, filename_ph_vid, duration_ph_vid=4, size_ph_vid=None):
        if size_ph_vid is None: size_ph_vid = self.video_frame_size
        filepath_ph_vid_out = os.path.join(self.output_dir, filename_ph_vid)
        text_clip_object_ph = None 
        try:
            text_clip_object_ph = TextClip(text_desc_ph_vid, fontsize=50, color='white', font=self.video_overlay_font,
                                bg_color='black', size=size_ph_vid, method='caption').set_duration(duration_ph_vid)
            text_clip_object_ph.write_videofile(filepath_ph_vid_out, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video created: {filepath_ph_vid_out}")
            return filepath_ph_vid_out
        except Exception as e_placeholder_video_creation: 
            logger.error(f"Failed to create generic placeholder video '{filepath_ph_vid_out}': {e_placeholder_video_creation}", exc_info=True)
            return None
        finally:
            if text_clip_object_ph and hasattr(text_clip_object_ph, 'close'):
                try: text_clip_object_ph.close()
                except Exception as e_close_placeholder_clip: logger.warning(f"Ignoring error closing placeholder TextClip: {e_close_placeholder_clip}")
    
    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data_dict, scene_identifier_fn_base,
                             generate_as_video_clip_flag=False, runway_target_dur_val=5):
        # (Corrected DALL-E loop from previous response)
        base_name_current_asset, _ = os.path.splitext(scene_identifier_fn_base)
        asset_info_return_obj = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
        path_to_input_image_for_runway = None
        filename_for_base_image_output = base_name_current_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png")
        filepath_for_base_image_output = os.path.join(self.output_dir, filename_for_base_image_output)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries_dalle, current_attempt_dalle = 2,0;
            for idx_dalle_attempt in range(max_retries_dalle):
                current_attempt_dalle = idx_dalle_attempt + 1
                try: 
                    logger.info(f"Att {current_attempt_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_client = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_response = oai_client.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_image_url = oai_response.data[0].url; oai_revised_prompt = getattr(oai_response.data[0],'revised_prompt',None);
                    if oai_revised_prompt: logger.info(f"DALL-E revised: {oai_revised_prompt[:70]}...")
                    oai_image_get_response = requests.get(oai_image_url,timeout=120); oai_image_get_response.raise_for_status(); oai_pil_image = Image.open(io.BytesIO(oai_image_get_response.content));
                    if oai_pil_image.mode!='RGB': oai_pil_image=oai_pil_image.convert('RGB')
                    oai_pil_image.save(filepath_for_base_image_output); logger.info(f"DALL-E base img saved: {filepath_for_base_image_output}"); path_to_input_image_for_runway=filepath_for_base_image_output; asset_info_return_obj={'path':filepath_for_base_image_output,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_revised_prompt}; break 
                except openai.RateLimitError as e_dalle_rl: logger.warning(f"OpenAI RateLimit Att {current_attempt_dalle}:{e_dalle_rl}.Retry...");time.sleep(5*current_attempt_dalle);asset_info_return_obj['error_message']=str(e_dalle_rl)
                except openai.APIError as e_dalle_api: logger.error(f"OpenAI APIError Att {current_attempt_dalle}:{e_dalle_api}");asset_info_return_obj['error_message']=str(e_dalle_api);break
                except requests.exceptions.RequestException as e_dalle_req: logger.error(f"Requests Err DALL-E Att {current_attempt_dalle}:{e_dalle_req}");asset_info_return_obj['error_message']=str(e_dalle_req);break
                except Exception as e_dalle_gen: logger.error(f"General DALL-E Err Att {current_attempt_dalle}:{e_dalle_gen}",exc_info=True);asset_info_return_obj['error_message']=str(e_dalle_gen);break
            if asset_info_return_obj['error']: logger.warning(f"DALL-E failed after {current_attempt_dalle} attempts for base img.")
        if asset_info_return_obj['error'] and self.USE_PEXELS:
            logger.info("Trying Pexels for base img.");pexels_query_text_val = scene_data_dictionary.get('pexels_search_query_๊ฐ๋…',f"{scene_data_dictionary.get('emotional_beat','')} {scene_data_dictionary.get('setting_description','')}");pexels_path_result = self._search_pexels_image(pexels_query_text_val, filename_for_base_image_output);
            if pexels_path_result:path_to_input_image_for_runway=pexels_path_result;asset_info_return_obj={'path':pexels_path_result,'type':'image','error':False,'prompt_used':f"Pexels:{pexels_query_text_val}"}
            else:current_error_msg_pexels=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_pexels+" Pexels failed for base.").strip()
        if asset_info_return_obj['error']:
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");placeholder_prompt_text_val =asset_info_return_obj.get('prompt_used',image_generation_prompt_text);placeholder_path_result=self._create_placeholder_image_content(f"[Base Placeholder]{placeholder_prompt_text_val[:70]}...",filename_for_base_image_output);
            if placeholder_path_result:path_to_input_image_for_runway=placeholder_path_result;asset_info_return_obj={'path':placeholder_path_result,'type':'image','error':False,'prompt_used':placeholder_prompt_text_val}
            else:current_error_msg_ph=asset_info_return_obj.get('error_message',"");asset_info_return_obj['error_message']=(current_error_msg_ph+" Base placeholder failed.").strip()
        if generate_as_video_clip_flag:
            if not path_to_input_image_for_runway:logger.error("RunwayML video: base img failed.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_return_obj['type']='none';return asset_info_return_obj
            if self.USE_RUNWAYML:
                runway_generated_video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_to_input_image_for_runway,base_name_current_asset,runway_target_duration_val)
                if runway_generated_video_path and os.path.exists(runway_generated_video_path):asset_info_return_obj={'path':runway_generated_video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_to_input_image_for_runway}
                else:logger.warning(f"RunwayML video failed for {base_name_current_asset}. Fallback to base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
            else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_return_obj['error']=True;asset_info_return_obj['error_message']=(asset_info_return_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_return_obj['path']=path_to_input_image_for_runway;asset_info_return_obj['type']='image';asset_info_return_obj['prompt_used']=image_generation_prompt_text
        return asset_info_return_obj

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        # <<< CORRECTED METHOD with try/except >>>
        if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not text_to_narrate:
            logger.info("ElevenLabs conditions not met (service disabled, client not init, or no text). Skipping audio generation.")
            return None
        audio_filepath_narration = os.path.join(self.output_dir, output_filename)
        try: # Main try block for the entire operation
            logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for text: \"{text_to_narrate[:70]}...\"")
            audio_stream_method_11l = None
            if hasattr(self.elevenlabs_client_instance, 'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech, 'stream'):
                audio_stream_method_11l = self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using ElevenLabs SDK method: client.text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client_instance, 'generate_stream'):
                audio_stream_method_11l = self.elevenlabs_client_instance.generate_stream; logger.info("Using ElevenLabs SDK method: client.generate_stream()")
            elif hasattr(self.elevenlabs_client_instance, 'generate'):
                logger.info("Using ElevenLabs SDK method: client.generate() (non-streaming).")
                voice_param_11l = str(self.elevenlabs_voice_id)
                if Voice and self.elevenlabs_voice_settings_obj: voice_param_11l = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings_obj)
                audio_bytes_data = self.elevenlabs_client_instance.generate(text=text_to_narrate, voice=voice_param_11l, model="eleven_multilingual_v2")
                with open(audio_filepath_narration, "wb") as audio_file_out: audio_file_out.write(audio_bytes_data)
                logger.info(f"ElevenLabs audio (non-streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
            else: logger.error("No recognized audio generation method found on the ElevenLabs client instance."); return None

            if audio_stream_method_11l:
                params_for_voice_stream = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings_obj:
                    if hasattr(self.elevenlabs_voice_settings_obj, 'model_dump'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings_obj, 'dict'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.dict()
                    else: params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj
                audio_data_iterator_11l = audio_stream_method_11l(text=text_to_narrate, model_id="eleven_multilingual_v2", **params_for_voice_stream)
                with open(audio_filepath_narration, "wb") as audio_file_out_stream:
                    for audio_chunk_data in audio_data_iterator_11l:
                        if audio_chunk_data: audio_file_out_stream.write(audio_chunk_data)
                logger.info(f"ElevenLabs audio (streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
        except AttributeError as ae_11l_sdk: logger.error(f"AttributeError with ElevenLabs SDK client: {ae_11l_sdk}. SDK version/methods might differ.", exc_info=True); return None
        except Exception as e_11l_general_audio: logger.error(f"General error during ElevenLabs audio generation: {e_11l_general_audio}", exc_info=True); return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")

        for i_asset, asset_info_item_loop in enumerate(asset_data_list):
            path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
            num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
            logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")

            if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
            if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
            
            active_scene_clip = None
            try:
                if type_of_asset == 'image':
                    pil_img_original = Image.open(path_of_asset); logger.debug(f"S{num_of_scene} (0-Load): Original. Mode:{pil_img_original.mode}, Size:{pil_img_original.size}"); pil_img_original.save(os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png"))
                    img_rgba_intermediate = pil_img_original.convert('RGBA') if pil_img_original.mode != 'RGBA' else pil_img_original.copy().convert('RGBA'); logger.debug(f"S{num_of_scene} (1-ToRGBA): Mode:{img_rgba_intermediate.mode}, Size:{img_rgba_intermediate.size}"); img_rgba_intermediate.save(os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png"))
                    thumbnailed_img_rgba = img_rgba_intermediate.copy(); resample_filter_pil = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img_rgba.thumbnail(self.video_frame_size, resample_filter_pil); logger.debug(f"S{num_of_scene} (2-Thumbnail): Mode:{thumbnailed_img_rgba.mode}, Size:{thumbnailed_img_rgba.size}"); thumbnailed_img_rgba.save(os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png"))
                    canvas_for_compositing_rgba = Image.new('RGBA', self.video_frame_size, (0,0,0,0)); pos_x_paste = (self.video_frame_size[0] - thumbnailed_img_rgba.width) // 2; pos_y_paste = (self.video_frame_size[1] - thumbnailed_img_rgba.height) // 2; canvas_for_compositing_rgba.paste(thumbnailed_img_rgba, (pos_x_paste, pos_y_paste), thumbnailed_img_rgba); logger.debug(f"S{num_of_scene} (3-PasteOnRGBA): Mode:{canvas_for_compositing_rgba.mode}, Size:{canvas_for_compositing_rgba.size}"); canvas_for_compositing_rgba.save(os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png"))
                    final_rgb_image_for_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)); 
                    if canvas_for_compositing_rgba.mode == 'RGBA': final_rgb_image_for_pil.paste(canvas_for_compositing_rgba, mask=canvas_for_compositing_rgba.split()[3])
                    else: final_rgb_image_for_pil.paste(canvas_for_compositing_rgba)
                    logger.debug(f"S{num_of_scene} (4-ToRGB): Final RGB. Mode:{final_rgb_image_for_pil.mode}, Size:{final_rgb_image_for_pil.size}")
                    debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); final_rgb_image_for_pil.save(debug_path_img_pre_numpy); logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} to {debug_path_img_pre_numpy}")
                    
                    numpy_frame_arr = np.array(final_rgb_image_for_pil, dtype=np.uint8)
                    if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr = np.ascontiguousarray(numpy_frame_arr, dtype=np.uint8)
                    logger.debug(f"S{num_of_scene} (5-NumPy): Final NumPy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, Flags:{numpy_frame_arr.flags}")
                    if numpy_frame_arr.size == 0 or numpy_frame_arr.ndim != 3 or numpy_frame_arr.shape[2] != 3: logger.error(f"S{num_of_scene}: Invalid NumPy shape/size ({numpy_frame_arr.shape}). Skipping."); continue
                    
                    base_image_clip_mvpy = ImageClip(numpy_frame_arr, transparent=False, ismask=False).set_duration(duration_for_scene)
                    logger.debug(f"S{num_of_scene} (6-ImageClip): Base ImageClip. Duration: {base_image_clip_mvpy.duration}")

                    debug_path_moviepy_frame = os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png")
                    # <<< THIS IS THE CORRECTED TRY-EXCEPT BLOCK >>>
                    try:
                        save_frame_time = min(0.1, base_image_clip_mvpy.duration / 2 if base_image_clip_mvpy.duration > 0 else 0.1)
                        base_image_clip_mvpy.save_frame(debug_path_moviepy_frame, t=save_frame_time) 
                        logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip S{num_of_scene} to {debug_path_moviepy_frame}")
                    except Exception as e_save_mvpy_frame:
                        logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_mvpy_frame}", exc_info=True)
                    
                    fx_image_clip_mvpy = base_image_clip_mvpy
                    try:
                        scale_end_kb_val = random.uniform(1.03, 1.08)
                        if duration_for_scene > 0: fx_image_clip_mvpy = base_image_clip_mvpy.fx(vfx.resize, lambda t_val: 1 + (scale_end_kb_val - 1) * (t_val / duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene} (8-KenBurns): Ken Burns applied.")
                        else: logger.warning(f"S{num_of_scene}: Duration zero, skipping Ken Burns.")
                    except Exception as e_kb_fx_loop: logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx_loop}", exc_info=False)
                    active_scene_clip = fx_image_clip_mvpy
                elif type_of_asset == 'video':
                    source_video_clip_obj=None
                    try:
                        logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}")
                        source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        temp_video_clip_obj_loop=source_video_clip_obj
                        if source_video_clip_obj.duration!=duration_for_scene:
                            if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
                            else:
                                if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
                                else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
                        active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
                        if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
                        logger.debug(f"S{num_of_scene}: Video asset processed. Final duration: {active_scene_clip.duration:.2f}s")
                    except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
                    finally:
                        if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):
                            try: source_video_clip_obj.close()
                            except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}")
                else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue
                if active_scene_clip and action_in_key:
                    try:
                        dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else (active_scene_clip.duration if active_scene_clip.duration > 0 else 0)
                        start_text_overlay_val=0.25 if active_scene_clip.duration > 0.5 else 0
                        if dur_text_overlay_val > 0:
                            text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True)
                            active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True)
                            logger.debug(f"S{num_of_scene}: Text overlay composited.")
                        else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.")
                    except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True)
                if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.")
            except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True)
            finally:
                if active_scene_clip and hasattr(active_scene_clip,'close'):
                    try: active_scene_clip.close()
                    except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}")
        
        if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None
        transition_duration_val=0.75
        try:
            logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic.");
            if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose")
            elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0]
            if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None
            logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s")
            if transition_duration_val > 0 and final_video_output_clip.duration > 0:
                if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
                else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
                logger.debug("Applied fade in/out effects to final composite clip.")
            if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0:
                try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.")
                except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True)
            elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.")
            if final_video_output_clip and final_video_output_clip.duration > 0:
                final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)")
                num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2
                final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str
            else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None
        except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
            all_clips_for_closure = processed_moviepy_clips_list[:]
            if narration_audio_clip_mvpy and hasattr(narration_audio_clip_mvpy, 'close'): all_clips_for_closure.append(narration_audio_clip_mvpy)
            if final_video_output_clip and hasattr(final_video_output_clip, 'close'): all_clips_for_closure.append(final_video_output_clip)
            for clip_to_close_item_final in all_clips_for_closure:
                if clip_to_close_item_final and hasattr(clip_to_close_item_final, 'close'):
                    try: clip_to_close_item_final.close()
                    except Exception as e_final_clip_close_op: logger.warning(f"Ignoring error while closing a MoviePy clip ({type(clip_to_close_item_final).__name__}): {e_final_clip_close_op}")