Spaces:
Running
on
Zero
Running
on
Zero
## Triton Inference Serving Best Practice for F5-TTS | |
### Quick Start | |
Directly launch the service using docker compose. | |
```sh | |
# TODO: support F5TTS_v1_Base | |
MODEL=F5TTS_Base docker compose up | |
``` | |
### Build Image | |
Build the docker image from scratch. | |
```sh | |
docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12 | |
``` | |
### Create Docker Container | |
```sh | |
your_mount_dir=/mnt:/mnt | |
docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12 | |
``` | |
### Export Models to TensorRT-LLM and Launch Server | |
Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/whisper). | |
```sh | |
bash run.sh 0 4 F5TTS_Base | |
``` | |
### HTTP Client | |
```sh | |
python3 client_http.py | |
``` | |
### Benchmark using Client-Server Mode | |
```sh | |
num_task=2 | |
python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts | |
``` | |
### Benchmark using Offline TRT-LLM Mode | |
```sh | |
batch_size=1 | |
split_name=wenetspeech4tts | |
backend_type=trt | |
log_dir=./log_benchmark_batch_size_${batch_size}_${split_name}_${backend_type} | |
rm -r $log_dir | |
ln -s model_repo_f5_tts/f5_tts/1/f5_tts_trtllm.py ./ | |
torchrun --nproc_per_node=1 \ | |
benchmark.py --output-dir $log_dir \ | |
--batch-size $batch_size \ | |
--enable-warmup \ | |
--split-name $split_name \ | |
--model-path $F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt \ | |
--vocab-file $F5_TTS_HF_DOWNLOAD_PATH/$model/vocab.txt \ | |
--vocoder-trt-engine-path $vocoder_trt_engine_path \ | |
--backend-type $backend_type \ | |
--tllm-model-dir $F5_TTS_TRT_LLM_ENGINE_PATH || exit 1 | |
``` | |
### Benchmark Results | |
Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE. | |
| Model | Concurrency | Avg Latency | RTF | Mode | | |
|---------------------|----------------|-------------|--------|-----------------| | |
| F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server | | |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM | | |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch | | |
### Credits | |
1. [F5-TTS-TRTLLM](https://github.com/Bigfishering/f5-tts-trtllm) | |