Spaces:
Sleeping
Sleeping
File size: 13,223 Bytes
06d6b9f 6bdcad8 1f6d97d 06d6b9f 7704bc6 1f6d97d 7704bc6 1f6d97d 7704bc6 b9b66e6 ec87247 1f6d97d 6bdcad8 1f6d97d 6bdcad8 1f6d97d 6bdcad8 1f6d97d 6bdcad8 7704bc6 1f6d97d 7704bc6 1f6d97d 7704bc6 b9b66e6 7704bc6 6bdcad8 1f6d97d e96f282 7704bc6 ec87247 1f6d97d 7704bc6 e96f282 1f6d97d 6bdcad8 e96f282 7704bc6 ec87247 1f6d97d e96f282 7704bc6 1f6d97d e96f282 7704bc6 1f6d97d ec87247 1f6d97d ec87247 1f6d97d 06d6b9f 1f6d97d 6bdcad8 06d6b9f 1f6d97d 06d6b9f 7704bc6 1f6d97d 7704bc6 6bdcad8 e96f282 1f6d97d ec87247 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d b9b66e6 1f6d97d e96f282 1f6d97d e96f282 1f6d97d e96f282 1f6d97d ec87247 1f6d97d ec87247 6bdcad8 1f6d97d 6bdcad8 1f6d97d 6bdcad8 1f6d97d e96f282 1f6d97d 06d6b9f 1f6d97d ec87247 6bdcad8 1f6d97d e96f282 1f6d97d 7704bc6 1f6d97d b9b66e6 7704bc6 ec87247 06d6b9f ec87247 e96f282 1f6d97d ec87247 1f6d97d ec87247 7704bc6 ec87247 1f6d97d 06d6b9f 1f6d97d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
"""
DeepSORT Tracker Implementation - Complete Fixed Version
Uses Kalman filter for motion prediction + appearance features
"""
import numpy as np
from scipy.optimize import linear_sum_assignment
from scipy.spatial.distance import cosine
from collections import deque
from typing import List, Optional, Tuple
import uuid
from detection import Detection
class KalmanFilter:
"""Kalman Filter for tracking with constant velocity model"""
def __init__(self):
self.F = np.eye(8)
for i in range(4):
self.F[i, i+4] = 1
self.H = np.eye(4, 8)
self.Q = np.eye(8)
self.Q[4:, 4:] *= 0.01
self.R = np.eye(4) * 10
self.P = np.eye(8) * 1000
self.x = np.zeros(8)
def initiate(self, measurement: np.ndarray):
self.x[:4] = measurement
self.x[4:] = 0
def predict(self):
self.x = self.F @ self.x
self.P = self.F @ self.P @ self.F.T + self.Q
return self.x[:4]
def update(self, measurement: np.ndarray):
y = measurement - self.H @ self.x
S = self.H @ self.P @ self.H.T + self.R
K = self.P @ self.H.T @ np.linalg.inv(S)
self.x = self.x + K @ y
self.P = (np.eye(8) - K @ self.H) @ self.P
return self.x[:4]
def get_state(self) -> np.ndarray:
return self.x[:4]
class DeepSORTTrack:
"""DeepSORT Track with Kalman filter and appearance features"""
def __init__(self, detection: Detection, track_id: Optional[int] = None):
self.track_id = track_id if track_id else self._generate_id()
x1, y1, x2, y2 = detection.bbox
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1
h = y2 - y1
self.kf = KalmanFilter()
self.kf.initiate(np.array([cx, cy, w, h]))
self.detections = [detection]
self.confidence = detection.confidence
self.hits = 1
self.age = 1
self.time_since_update = 0
self.state = 'tentative'
self.features = deque(maxlen=100)
if hasattr(detection, 'features') and detection.features is not None:
self.features.append(detection.features)
self.trajectory = deque(maxlen=30)
self.trajectory.append((cx, cy))
self.avg_confidence = self.confidence
self.consecutive_misses = 0
def _generate_id(self) -> int:
return int(uuid.uuid4().int % 100000)
@property
def bbox(self) -> List[float]:
cx, cy, w, h = self.kf.get_state()
return [cx - w/2, cy - h/2, cx + w/2, cy + h/2]
def predict(self):
self.age += 1
self.time_since_update += 1
self.consecutive_misses += 1
self.kf.predict()
def update(self, detection: Detection):
x1, y1, x2, y2 = detection.bbox
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1
h = y2 - y1
self.kf.update(np.array([cx, cy, w, h]))
self.detections.append(detection)
self.confidence = detection.confidence
self.avg_confidence = 0.9 * self.avg_confidence + 0.1 * self.confidence
self.hits += 1
self.time_since_update = 0
self.consecutive_misses = 0
if hasattr(detection, 'features') and detection.features is not None:
self.features.append(detection.features)
self.trajectory.append((cx, cy))
if self.state == 'tentative' and self.hits >= 3:
self.state = 'confirmed'
if len(self.detections) > 5:
for old_det in self.detections[:-5]:
if hasattr(old_det, 'image_crop'):
old_det.image_crop = None
self.detections = self.detections[-5:]
def mark_missed(self):
if self.state == 'confirmed':
if self.consecutive_misses > 30 or self.time_since_update > 60:
self.state = 'deleted'
elif self.state == 'tentative':
if self.consecutive_misses > 5:
self.state = 'deleted'
def get_feature(self) -> Optional[np.ndarray]:
if not self.features:
return None
features_array = np.array(list(self.features))
weights = np.exp(np.linspace(-1, 0, len(features_array)))
weights /= weights.sum()
return np.average(features_array, axis=0, weights=weights)
class DeepSORTTracker:
"""DeepSORT Tracker combining Kalman filter with appearance features"""
def __init__(self,
max_iou_distance: float = 0.7,
max_age: int = 30,
n_init: int = 3,
nn_budget: int = 100,
use_appearance: bool = True):
self.max_iou_distance = max_iou_distance
self.max_age = max_age
self.n_init = n_init
self.nn_budget = nn_budget
self.use_appearance = use_appearance
self.tracks: List[DeepSORTTrack] = []
self.track_id_count = 1
self.gating_threshold_iou = 0.3
self.gating_threshold_appearance = 0.5
def update(self, detections: List[Detection]) -> List[DeepSORTTrack]:
for track in self.tracks:
track.predict()
matches, unmatched_tracks, unmatched_detections = self._match(
detections, self.tracks
)
for track_idx, det_idx in matches:
self.tracks[track_idx].update(detections[det_idx])
for track_idx in unmatched_tracks:
self.tracks[track_idx].mark_missed()
for det_idx in unmatched_detections:
self._initiate_track(detections[det_idx])
self.tracks = [t for t in self.tracks if t.state != 'deleted']
return [t for t in self.tracks if t.state == 'confirmed']
def _match(self, detections: List[Detection], tracks: List[DeepSORTTrack]) -> Tuple:
if not tracks or not detections:
return [], list(range(len(tracks))), list(range(len(detections)))
confirmed_tracks = [i for i, t in enumerate(tracks) if t.state == 'confirmed']
unconfirmed_tracks = [i for i, t in enumerate(tracks) if t.state == 'tentative']
matches_a, unmatched_tracks_a, unmatched_detections = \
self._matching_cascade(detections, tracks, confirmed_tracks)
iou_track_candidates = unconfirmed_tracks + unmatched_tracks_a
remaining_detections = [detections[i] for i in unmatched_detections]
matches_b, unmatched_tracks_b, unmatched_detections_b = \
self._match_iou(remaining_detections, tracks, iou_track_candidates)
matches_b = [(t, unmatched_detections[d]) for t, d in matches_b]
unmatched_detections = [unmatched_detections[i] for i in unmatched_detections_b]
matches = matches_a + matches_b
unmatched_tracks = unmatched_tracks_b
return matches, unmatched_tracks, unmatched_detections
def _matching_cascade(self, detections: List[Detection],
tracks: List[DeepSORTTrack],
track_indices: List[int]) -> Tuple:
matches = []
unmatched_detections = list(range(len(detections)))
for level in range(self.max_age):
if len(unmatched_detections) == 0:
break
track_indices_l = [
k for k in track_indices
if tracks[k].time_since_update == level
]
if len(track_indices_l) == 0:
continue
detection_subset = [detections[i] for i in unmatched_detections]
matches_l, _, unmatched_subset_indices = self._match_features_and_iou(
detection_subset,
tracks,
track_indices_l
)
matches_l_remapped = [(t, unmatched_detections[d]) for t, d in matches_l]
matches.extend(matches_l_remapped)
unmatched_detections = [unmatched_detections[i] for i in unmatched_subset_indices]
unmatched_tracks = [
k for k in track_indices
if k not in [t for t, _ in matches]
]
return matches, unmatched_tracks, unmatched_detections
def _match_features_and_iou(self, detections: List[Detection],
tracks: List[DeepSORTTrack],
track_indices: List[int]) -> Tuple:
if not track_indices or not detections:
return [], track_indices, list(range(len(detections)))
cost_matrix = np.zeros((len(track_indices), len(detections)))
for i, track_idx in enumerate(track_indices):
track = tracks[track_idx]
track_bbox = track.bbox
track_feature = track.get_feature()
for j, detection in enumerate(detections):
det_bbox = detection.bbox
iou = self._iou(track_bbox, det_bbox)
iou_cost = 1 - iou
if self.use_appearance and track_feature is not None:
if hasattr(detection, 'features') and detection.features is not None:
cosine_dist = cosine(track_feature, detection.features)
appearance_cost = cosine_dist
else:
appearance_cost = 0.5
else:
appearance_cost = 0.0
if self.use_appearance and track_feature is not None:
cost = 0.5 * iou_cost + 0.5 * appearance_cost
else:
cost = iou_cost
if iou < self.gating_threshold_iou:
cost = 1e6
if self.use_appearance and appearance_cost > self.gating_threshold_appearance:
cost = 1e6
cost_matrix[i, j] = cost
row_indices, col_indices = linear_sum_assignment(cost_matrix)
matches = []
unmatched_tracks = list(range(len(track_indices)))
unmatched_detections = list(range(len(detections)))
for row, col in zip(row_indices, col_indices):
if cost_matrix[row, col] < 1e5:
matches.append((track_indices[row], col))
unmatched_tracks.remove(row)
unmatched_detections.remove(col)
unmatched_tracks = [track_indices[i] for i in unmatched_tracks]
return matches, unmatched_tracks, unmatched_detections
def _match_iou(self, detections: List[Detection],
tracks: List[DeepSORTTrack],
track_indices: List[int]) -> Tuple:
if not track_indices or not detections:
return [], track_indices, list(range(len(detections)))
iou_matrix = np.zeros((len(track_indices), len(detections)))
for i, track_idx in enumerate(track_indices):
track = tracks[track_idx]
for j, detection in enumerate(detections):
iou = self._iou(track.bbox, detection.bbox)
iou_matrix[i, j] = 1 - iou
row_indices, col_indices = linear_sum_assignment(iou_matrix)
matches = []
unmatched_tracks = list(range(len(track_indices)))
unmatched_detections = list(range(len(detections)))
for row, col in zip(row_indices, col_indices):
if iou_matrix[row, col] < self.max_iou_distance:
matches.append((track_indices[row], col))
unmatched_tracks.remove(row)
unmatched_detections.remove(col)
unmatched_tracks = [track_indices[i] for i in unmatched_tracks]
return matches, unmatched_tracks, unmatched_detections
def _initiate_track(self, detection: Detection):
new_track = DeepSORTTrack(detection, self.track_id_count)
self.track_id_count += 1
self.tracks.append(new_track)
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
try:
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[2], bbox2[2])
y2 = min(bbox1[3], bbox2[3])
if x2 < x1 or y2 < y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
union = area1 + area2 - intersection
return intersection / (union + 1e-6)
except:
return 0.0
def reset(self):
self.tracks.clear()
self.track_id_count = 1
print("DeepSORT tracker reset")
SimpleTracker = DeepSORTTracker
RobustTracker = DeepSORTTracker |