|
use graphene_core::context::Ctx; |
|
use graphene_core::raster::image::Image; |
|
use graphene_core::raster_types::{CPU, Raster, RasterDataTable}; |
|
use graphene_core::registry::types::Percentage; |
|
use image::{DynamicImage, GenericImage, GenericImageView, GrayImage, ImageBuffer, Luma, Rgba, RgbaImage}; |
|
use ndarray::{Array2, ArrayBase, Dim, OwnedRepr}; |
|
use std::cmp::{max, min}; |
|
|
|
#[node_macro::node(category("Raster: Filter"))] |
|
async fn dehaze(_: impl Ctx, image_frame: RasterDataTable<CPU>, strength: Percentage) -> RasterDataTable<CPU> { |
|
let mut result_table = RasterDataTable::default(); |
|
|
|
for mut image_frame_instance in image_frame.instance_iter() { |
|
let image = image_frame_instance.instance; |
|
|
|
let image_data = bytemuck::cast_vec(image.data.clone()); |
|
let image_buffer = image::Rgba32FImage::from_raw(image.width, image.height, image_data).expect("Failed to convert internal image format into image-rs data type."); |
|
let dynamic_image: DynamicImage = image_buffer.into(); |
|
|
|
|
|
let dehazed_dynamic_image = dehaze_image(dynamic_image, strength / 100.); |
|
|
|
|
|
let buffer = dehazed_dynamic_image.to_rgba32f().into_raw(); |
|
let color_vec = bytemuck::cast_vec(buffer); |
|
let dehazed_image = Image { |
|
width: image.width, |
|
height: image.height, |
|
data: color_vec, |
|
base64_string: None, |
|
}; |
|
|
|
image_frame_instance.instance = Raster::new_cpu(dehazed_image); |
|
image_frame_instance.source_node_id = None; |
|
result_table.push(image_frame_instance); |
|
} |
|
|
|
result_table |
|
} |
|
|
|
|
|
|
|
const PATCH_SIZE: u32 = 15; |
|
const TOP_PERCENT: f64 = 0.001; |
|
const RADIUS: u32 = 60; |
|
const EPSILON: f64 = 0.0001; |
|
const TX: f32 = 0.1; |
|
|
|
|
|
|
|
|
|
fn dehaze_image(image: DynamicImage, strength: f64) -> DynamicImage { |
|
|
|
let dark_channel = compute_dark_channel(&image); |
|
let atmospheric_light = estimate_atmospheric_light(&image, &dark_channel); |
|
|
|
let transmission_map = estimate_transmission_map(&image, &dark_channel, strength); |
|
let refined_transmission_map = refine_transmission_map(&image, &transmission_map); |
|
|
|
recover(&image, &refined_transmission_map, atmospheric_light) |
|
} |
|
|
|
fn compute_dark_channel(image: &DynamicImage) -> DynamicImage { |
|
let (width, height) = image.dimensions(); |
|
let mut dark_channel = GrayImage::new(width, height); |
|
let half_patch = PATCH_SIZE / 2; |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let pixel = image.get_pixel(x, y); |
|
let min_intensity = min(min(pixel[0], pixel[1]), pixel[2]); |
|
dark_channel.put_pixel(x, y, Luma([min_intensity])); |
|
} |
|
} |
|
|
|
let mut eroded_channel = RgbaImage::new(width, height); |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let mut local_min = u8::MAX; |
|
|
|
for dy in 0..PATCH_SIZE { |
|
for dx in 0..PATCH_SIZE { |
|
let nx = x as i32 + dx as i32 - half_patch as i32; |
|
let ny = y as i32 + dy as i32 - half_patch as i32; |
|
|
|
if nx >= 0 && nx < width as i32 && ny >= 0 && ny < height as i32 { |
|
let intensity = dark_channel.get_pixel(nx as u32, ny as u32)[0]; |
|
if intensity < local_min { |
|
local_min = intensity; |
|
} |
|
} |
|
} |
|
} |
|
let alpha = image.get_pixel(x, y)[3]; |
|
eroded_channel.put_pixel(x, y, Rgba([local_min, local_min, local_min, alpha])); |
|
} |
|
} |
|
|
|
DynamicImage::ImageRgba8(eroded_channel) |
|
} |
|
|
|
fn estimate_atmospheric_light(hazy: &DynamicImage, dark_channel: &DynamicImage) -> Rgba<u8> { |
|
let (width, height) = hazy.dimensions(); |
|
let dark = dark_channel.to_luma_alpha8(); |
|
let total_pixels = (width * height) as usize; |
|
let num_pixels = ((TOP_PERCENT / 100.) * total_pixels as f64).ceil() as usize; |
|
|
|
let mut intensities: Vec<(u32, u32, f64)> = Vec::with_capacity(total_pixels); |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let pixel = dark.get_pixel(x, y); |
|
let intensity = pixel.0[0] as f64; |
|
intensities.push((x, y, intensity)) |
|
} |
|
} |
|
|
|
intensities.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap()); |
|
|
|
let top_intensities = &intensities[..num_pixels]; |
|
|
|
let mut atm_sum = [0., 0., 0.]; |
|
for (x, y, _) in top_intensities { |
|
let pixel = hazy.get_pixel(*x, *y); |
|
atm_sum[0] += pixel[0] as f64; |
|
atm_sum[1] += pixel[1] as f64; |
|
atm_sum[2] += pixel[2] as f64; |
|
} |
|
|
|
let num_pixels = num_pixels as f64; |
|
|
|
Rgba([(atm_sum[0] / num_pixels) as u8, (atm_sum[1] / num_pixels) as u8, (atm_sum[2] / num_pixels) as u8, 255]) |
|
} |
|
|
|
fn estimate_transmission_map(image: &DynamicImage, dark_channel: &DynamicImage, omega: f64) -> DynamicImage { |
|
let (width, height) = image.dimensions(); |
|
let mut transmission_map = RgbaImage::new(width, height); |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let min_intensity = dark_channel.get_pixel(x, y).0[0] as f32 / 255.; |
|
let transmission_value = 1. - omega * min_intensity as f64; |
|
let alpha = image.get_pixel(x, y)[3]; |
|
transmission_map.put_pixel( |
|
x, |
|
y, |
|
Rgba([(transmission_value * 255.) as u8, (transmission_value * 255.) as u8, (transmission_value * 255.) as u8, alpha]), |
|
); |
|
} |
|
} |
|
|
|
DynamicImage::ImageRgba8(transmission_map) |
|
} |
|
|
|
fn refine_transmission_map(img: &DynamicImage, transmission_map: &DynamicImage) -> DynamicImage { |
|
let gray_image = img.to_luma8(); |
|
|
|
let normalized_gray_image: GrayImage = ImageBuffer::from_fn(gray_image.width(), gray_image.height(), |x, y| { |
|
let pixel = gray_image.get_pixel(x, y); |
|
let normalized_value = (pixel[0] as f64 / 255.) * 255.; |
|
Luma([normalized_value as u8]) |
|
}); |
|
|
|
let normalized_gray_image = DynamicImage::ImageLuma8(normalized_gray_image); |
|
|
|
guided_filter(&normalized_gray_image, transmission_map, RADIUS, EPSILON) |
|
} |
|
|
|
fn recover(im: &DynamicImage, t: &DynamicImage, a: Rgba<u8>) -> DynamicImage { |
|
let (width, height) = im.dimensions(); |
|
let mut res = DynamicImage::new_rgba8(width, height); |
|
|
|
let a = [a[0] as f32 / 255., a[1] as f32 / 255., a[2] as f32 / 255.]; |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let im_pixel = im.get_pixel(x, y).0; |
|
let t_pixel = t.get_pixel(x, y).0; |
|
let t_val = f32::max(t_pixel[0] as f32 / 255., TX); |
|
|
|
let mut res_pixel = [0; 4]; |
|
for ind in 0..3 { |
|
res_pixel[ind] = ((((im_pixel[ind] as f32 / 255. - a[ind]) / t_val) + a[ind]).clamp(0., 1.) * 255.) as u8; |
|
} |
|
res_pixel[3] = im_pixel[3]; |
|
|
|
res.put_pixel(x, y, Rgba(res_pixel)); |
|
} |
|
} |
|
|
|
res |
|
} |
|
|
|
fn guided_filter(guidance_img: &DynamicImage, input_img: &DynamicImage, r: u32, epsilon: f64) -> DynamicImage { |
|
let (width, height) = guidance_img.dimensions(); |
|
let radius = r as i32; |
|
|
|
let guidance_nd = image_to_ndarray(guidance_img); |
|
let input_nd = image_to_ndarray(input_img); |
|
|
|
let mean_guidance = box_filter(&guidance_nd, radius); |
|
let mean_input = box_filter(&input_nd, radius); |
|
let corr_guidance = box_filter(&(guidance_nd.clone() * guidance_nd.clone()), radius); |
|
let corr_guidance_input = box_filter(&(guidance_nd.clone() * input_nd.clone()), radius); |
|
|
|
let var_guidance = &corr_guidance - &(mean_guidance.clone() * mean_guidance.clone()); |
|
let cov_guidance_input = &corr_guidance_input - &(mean_guidance.clone() * mean_input.clone()); |
|
|
|
let a = &cov_guidance_input / &(var_guidance.clone() + epsilon); |
|
let b = mean_input - &(a.clone() * mean_guidance); |
|
|
|
let mean_a = box_filter(&a, radius); |
|
let mean_b = box_filter(&b, radius); |
|
|
|
let q = &mean_a * &guidance_nd + mean_b; |
|
|
|
ndarray_to_image(&q, width, height) |
|
} |
|
|
|
fn box_filter(img: &Array2<f64>, radius: i32) -> Array2<f64> { |
|
let (height, width) = img.dim(); |
|
let mut result = Array2::zeros((height, width)); |
|
let mut integral_image: ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>> = Array2::zeros((height + 1, width + 1)); |
|
|
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
integral_image[(y + 1, x + 1)] = img[(y, x)] + integral_image[(y, x + 1)] + integral_image[(y + 1, x)] - integral_image[(y, x)]; |
|
} |
|
} |
|
|
|
for y in 0..height { |
|
for x in 0..width { |
|
let y1 = max(0, y as i32 - radius) as usize; |
|
let y2 = min(height as i32 - 1, y as i32 + radius) as usize; |
|
let x1 = max(0, x as i32 - radius) as usize; |
|
let x2 = min(width as i32 - 1, x as i32 + radius) as usize; |
|
|
|
let area = (y2 - y1 + 1) as f64 * (x2 - x1 + 1) as f64; |
|
|
|
result[(y, x)] = (integral_image[(y2 + 1, x2 + 1)] - integral_image[(y1, x2 + 1)] - integral_image[(y2 + 1, x1)] + integral_image[(y1, x1)]) / area; |
|
} |
|
} |
|
|
|
result |
|
} |
|
|
|
fn image_to_ndarray(img: &DynamicImage) -> Array2<f64> { |
|
let (width, height) = img.dimensions(); |
|
let mut array = Array2::zeros((height as usize, width as usize)); |
|
for (x, y, pixel) in img.pixels() { |
|
let luminance = pixel.0[0] as f64 / 255.; |
|
array[(y as usize, x as usize)] = luminance; |
|
} |
|
array |
|
} |
|
|
|
fn ndarray_to_image(array: &Array2<f64>, width: u32, height: u32) -> DynamicImage { |
|
let mut img = DynamicImage::new_rgba8(width, height); |
|
for ((y, x), &value) in array.indexed_iter() { |
|
let clamped_value = (value * 255.).clamp(0., 255.) as u8; |
|
img.put_pixel(x as u32, y as u32, Rgba([clamped_value, clamped_value, clamped_value, 255])); |
|
} |
|
img |
|
} |
|
|