File size: 9,514 Bytes
182160d 1b3bfe1 2ea78f5 1b3bfe1 182160d 8a158c4 182160d 3d2ef38 182160d 3d2ef38 182160d 3d2ef38 182160d 3d2ef38 182160d 3d2ef38 182160d 3d2ef38 93e7fe0 2ea78f5 93e7fe0 2ea78f5 93e7fe0 182160d 3d2ef38 2ea78f5 1b3bfe1 182160d 3d2ef38 182160d 2ea78f5 830a3ef 2ea78f5 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 830a3ef 1b3bfe1 2ea78f5 1b3bfe1 2ea78f5 830a3ef 1b3bfe1 2345f27 182160d 28d4a17 182160d 3d2ef38 182160d 2ea78f5 830a3ef da40d08 182160d 3d2ef38 7f84964 182160d 3d2ef38 3ea980f 2345f27 3ea980f 5cce4fd da40d08 2345f27 247a0af 1b3bfe1 2345f27 182160d 2ea78f5 182160d 17d17f1 182160d 1b3bfe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
# New imports for image and audio processing
from PIL import Image as PILImage # Used for type checking/potential future local processing
from huggingface_hub import InferenceClient
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
@tool
def web_search(query: str) -> dict:
"""Perform a web search (via Tavily) and return up to 3 results."""
try:
docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
for d in docs
)
return {"web_results": formatted}
except Exception as e:
print(f"Error in web_search tool: {e}")
return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"}
@tool
def arvix_search(query: str) -> dict:
"""Search arXiv for a query and return up to 3 paper excerpts."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
for d in docs
)
return {"arvix_results": formatted}
# Initialize Hugging Face Inference Client
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""
Reads the content of a file and returns its primary information.
For text/code/excel, returns content. For media, returns a prompt to use specific tools.
"""
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
if file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
elif file_extension in (".jpeg", ".jpg", ".png"):
# Indicate that it's an image and needs to be described by a specific tool
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
elif file_extension == ".mp3":
# Indicate that it's an audio file and needs to be transcribed by a specific tool
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""
Executes Python code and returns its standard output.
If there's an error during execution, it returns the error message.
"""
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
@tool
def describe_image(image_path: str) -> Dict[str, str]:
"""
Generates a textual description for an image file (JPEG, JPG, PNG) using an image-to-text model
from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set.
"""
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
return {"image_description": description, "image_path": image_path}
except FileNotFoundError:
return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error describing image {image_path}: {str(e)}"}
@tool
def transcribe_audio(audio_path: str) -> Dict[str, str]:
"""
Transcribes an audio file (e.g., MP3) to text using an automatic speech recognition model
from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set.
"""
if not HF_INFERENCE_CLIENT:
return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."}
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes)
return {"audio_transcription": transcription, "audio_path": audio_path}
except FileNotFoundError:
return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."}
except Exception as e:
return {"error": f"Error transcribing audio {audio_path}: {str(e)}"}
API_KEY = os.getenv("GEMINI_API_KEY")
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search,
read_file_content,
python_interpreter,
describe_image,
transcribe_audio,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
"""Build the LangGraph agent with chosen LLM (default: Gemini)."""
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model= "gemini-2.5-pro-preview-05-06", # Reverted model to gemini-2.5-pro-preview-05-06
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
return {"messages": [llm_with_tools.invoke(messages_to_send)]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
# This block is intentionally left empty as per user request to remove examples.
# Your agent will interact with the graph by invoking it with messages.
pass
|