File size: 9,514 Bytes
182160d
1b3bfe1
 
2ea78f5
 
 
 
 
 
1b3bfe1
182160d
 
 
 
 
 
 
8a158c4
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
182160d
 
 
 
 
 
3d2ef38
182160d
 
 
 
3d2ef38
93e7fe0
2ea78f5
93e7fe0
 
 
2ea78f5
93e7fe0
 
 
 
 
 
 
182160d
 
3d2ef38
2ea78f5
1b3bfe1
 
 
 
 
 
 
 
 
182160d
 
 
3d2ef38
182160d
 
 
 
 
 
 
2ea78f5
 
 
 
 
 
830a3ef
2ea78f5
1b3bfe1
 
 
2ea78f5
 
1b3bfe1
 
 
2ea78f5
 
 
1b3bfe1
 
2ea78f5
 
1b3bfe1
2ea78f5
 
 
 
 
 
830a3ef
 
1b3bfe1
2ea78f5
1b3bfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ea78f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830a3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3bfe1
2345f27
182160d
28d4a17
182160d
3d2ef38
182160d
 
 
2ea78f5
 
830a3ef
da40d08
182160d
 
3d2ef38
7f84964
182160d
 
 
3d2ef38
3ea980f
2345f27
3ea980f
5cce4fd
da40d08
2345f27
 
247a0af
1b3bfe1
2345f27
 
182160d
 
 
 
 
 
 
 
2ea78f5
182160d
 
 
 
17d17f1
 
182160d
 
 
 
 
 
 
 
 
 
 
1b3bfe1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union

# New imports for image and audio processing
from PIL import Image as PILImage # Used for type checking/potential future local processing
from huggingface_hub import InferenceClient

from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second; error if divisor is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder of dividing first integer by second."""
    return a % b

@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia for a query and return up to 2 documents."""
    try:
        docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load()
        if not docs:
            return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
            for d in docs
        )
        return {"wiki_results": formatted}
    except Exception as e:
        print(f"Error in wiki_search tool: {e}")
        return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}

@tool
def web_search(query: str) -> dict:
    """Perform a web search (via Tavily) and return up to 3 results."""
    try:
        docs = TavilySearchResults(max_results=3).invoke(query=query)
        formatted = "\n\n---\n\n".join(
            f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
            for d in docs
        )
        return {"web_results": formatted}
    except Exception as e:
        print(f"Error in web_search tool: {e}")
        return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"}

@tool
def arvix_search(query: str) -> dict:
    """Search arXiv for a query and return up to 3 paper excerpts."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
        for d in docs
    )
    return {"arvix_results": formatted}

# Initialize Hugging Face Inference Client
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
    HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
    print("WARNING: HF_API_TOKEN not set. Image and Audio tools will not function.")

@tool
def read_file_content(file_path: str) -> Dict[str, str]:
    """
    Reads the content of a file and returns its primary information.
    For text/code/excel, returns content. For media, returns a prompt to use specific tools.
    """
    try:
        _, file_extension = os.path.splitext(file_path)
        file_extension = file_extension.lower()

        if file_extension in (".txt", ".py"):
            with open(file_path, "r", encoding="utf-8") as f:
                content = f.read()
            return {"file_type": "text/code", "file_name": file_path, "file_content": content}
        elif file_extension == ".xlsx":
             df = pd.read_excel(file_path)
             content = df.to_string()
             return {"file_type": "excel", "file_name": file_path, "file_content": content}
        elif file_extension in (".jpeg", ".jpg", ".png"):
            # Indicate that it's an image and needs to be described by a specific tool
            return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. Use 'describe_image' tool to get a textual description."}
        elif file_extension == ".mp3":
            # Indicate that it's an audio file and needs to be transcribed by a specific tool
            return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. Use 'transcribe_audio' tool to get the text transcription."}
        else:
            return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3 files are recognized."}
    except FileNotFoundError:
        return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
    except Exception as e:
        return {"file_error": f"Error reading file {file_path}: {e}"}

@tool
def python_interpreter(code: str) -> Dict[str, str]:
    """
    Executes Python code and returns its standard output.
    If there's an error during execution, it returns the error message.
    """
    old_stdout = io.StringIO()
    with contextlib.redirect_stdout(old_stdout):
        try:
            exec_globals = {}
            exec_locals = {}
            exec(code, exec_globals, exec_locals)
            output = old_stdout.getvalue()
            return {"execution_result": output.strip()}
        except Exception as e:
            return {"execution_error": str(e)}

@tool
def describe_image(image_path: str) -> Dict[str, str]:
    """
    Generates a textual description for an image file (JPEG, JPG, PNG) using an image-to-text model
    from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set.
    """
    if not HF_INFERENCE_CLIENT:
        return {"error": "Hugging Face API token not configured for image description. Cannot use this tool."}
    try:
        with open(image_path, "rb") as f:
            image_bytes = f.read()
        description = HF_INFERENCE_CLIENT.image_to_text(image_bytes)
        return {"image_description": description, "image_path": image_path}
    except FileNotFoundError:
        return {"error": f"Image file not found: {image_path}. Please ensure the file exists."}
    except Exception as e:
        return {"error": f"Error describing image {image_path}: {str(e)}"}

@tool
def transcribe_audio(audio_path: str) -> Dict[str, str]:
    """
    Transcribes an audio file (e.g., MP3) to text using an automatic speech recognition model
    from the Hugging Face Inference API. Requires HF_API_TOKEN environment variable to be set.
    """
    if not HF_INFERENCE_CLIENT:
        return {"error": "Hugging Face API token not configured for audio transcription. Cannot use this tool."}
    try:
        with open(audio_path, "rb") as f:
            audio_bytes = f.read()
        transcription = HF_INFERENCE_CLIENT.automatic_speech_recognition(audio_bytes)
        return {"audio_transcription": transcription, "audio_path": audio_path}
    except FileNotFoundError:
        return {"error": f"Audio file not found: {audio_path}. Please ensure the file exists."}
    except Exception as e:
        return {"error": f"Error transcribing audio {audio_path}: {str(e)}"}


API_KEY = os.getenv("GEMINI_API_KEY")
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")


tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search,
    read_file_content,
    python_interpreter,
    describe_image,
    transcribe_audio,
]


with open("prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)


def build_graph(provider: str = "gemini"):
    """Build the LangGraph agent with chosen LLM (default: Gemini)."""
    if provider == "gemini":
        llm = ChatGoogleGenerativeAI(
        model= "gemini-2.5-pro-preview-05-06", # Reverted model to gemini-2.5-pro-preview-05-06
        temperature=1.0,
        max_retries=2,
        api_key=GEMINI_API_KEY,
        max_tokens=5000
)

    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            ),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        messages_to_send = [sys_msg] + state["messages"]
        return {"messages": [llm_with_tools.invoke(messages_to_send)]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    # This block is intentionally left empty as per user request to remove examples.
    # Your agent will interact with the graph by invoking it with messages.
    pass