Final_Assignment_Template / langgraph_agent.py
philincloud's picture
Update langgraph_agent.py
e4b659c verified
raw
history blame
12.5 kB
import os
import io
import contextlib
import pandas as pd
from typing import Dict, List, Union
import re
from PIL import Image as PILImage # Keep PIL for potential future use or if other parts depend on it, but describe_image is removed.
from huggingface_hub import InferenceClient # Keep InferenceClient for other potential HF uses, but describe_image is removed.
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_google_community import GoogleSearchAPIWrapper
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=5, lang="en", doc_content_chars_max=7000).load()
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}'
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
search = GoogleSearchAPIWrapper()
@tool
def google_web_search(query: str) -> str:
"""Perform a web search (via Google Custom Search) and return results."""
try:
return search.run(query)
except Exception as e:
print(f"Error in google_web_search tool: {e}")
return f"Error occurred while searching the web for '{query}'. Details: {str(e)}"
# HF_API_TOKEN is no longer directly needed for describe_image as that tool is removed.
# But keeping InferenceClient initialization for completeness if other HF tools might be added later.
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
MODEL = os.getenv("MODEL")
HF_INFERENCE_CLIENT = None
if HF_API_TOKEN:
HF_INFERENCE_CLIENT = InferenceClient(token=HF_API_TOKEN)
else:
print("WARNING: HF_API_TOKEN not set. If any other HF tools are used, they might not function.")
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""Reads the content of a file and returns its primary information. For text/code/excel, returns content. For media, indicates it's a blob for LLM processing."""
try:
_, file_extension = os.path.splitext(file_path)
file_extension = file_extension.lower()
# Prioritize handling of video, audio, and image files for direct LLM processing
if file_extension in (".mp4", ".avi", ".mov", ".mkv", ".webm"):
return {"file_type": "video", "file_name": file_path, "file_content": f"Video file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this video content directly as a blob."}
elif file_extension == ".mp3":
return {"file_type": "audio", "file_name": file_path, "file_content": f"Audio file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this audio content directly as a blob."}
elif file_extension in (".jpeg", ".jpg", ".png"):
return {"file_type": "image", "file_name": file_path, "file_content": f"Image file '{file_path}' detected. The LLM (Gemini 2.5 Pro) can process this image content directly as a blob."}
# Handle text and code files
elif file_extension in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return {"file_type": "text/code", "file_name": file_path, "file_content": content}
# Handle Excel files
elif file_extension == ".xlsx":
df = pd.read_excel(file_path)
content = df.to_string()
return {"file_type": "excel", "file_name": file_path, "file_content": content}
else:
return {"file_type": "unsupported", "file_name": file_path, "file_content": f"Unsupported file type: {file_extension}. Only .txt, .py, .xlsx, .jpeg, .jpg, .png, .mp3, .mp4, .avi, .mov, .mkv, .webm files are recognized."}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""Executes Python code and returns its standard output. If there's an error during execution, it returns the error message."""
old_stdout = io.StringIO()
with contextlib.redirect_stdout(old_stdout):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
# --- Youtube Tool (Remains the same) ---
@tool
def Youtube(url: str, question: str) -> Dict[str, str]:
"""
Tells about the YouTube video identified by the given URL, answering a question about it.
Note: This is a simulated response. In a real application, this would interact with a YouTube API
or a video analysis service to get actual video information and transcripts.
"""
print(f"Youtube called with URL: {url}, Question: {question}")
# Placeholder for actual YouTube API call.
# In a real scenario, you'd use a library like `google-api-python-client` for YouTube Data API
# or a dedicated video transcription/analysis service.
# Simulating the previous video content for demonstration
if "https://www.youtube.com/watch?v=1htKBjuUWec" in url or re.search(r'youtube\.com/watch\?v=|youtu\.be/', url):
return {
"video_url": url,
"question_asked": question,
"video_summary": "The video titled 'Teal'c coffee first time' shows a scene where several individuals are reacting to a beverage, presumably coffee, that Teal'c is trying for the first time. Key moments include: A person off-screen remarking, 'Wow this coffee's great'; another asking if it's 'cinnamon chicory tea oak'; and Teal'c reacting strongly to the taste or temperature, stating 'isn't that hot' indicating he finds it very warm.",
"details": {
"00:00:00": "Someone remarks, 'Wow this coffee's great I was just thinking that yeah is that cinnamon chicory tea oak'",
"00:00:11": "Teal'c takes a large gulp from a black mug",
"00:00:24": "Teal'c reacts strongly, someone asks 'isn't that hot'",
"00:00:26": "Someone agrees, 'extremely'"
}
}
else:
return {"error": "Invalid or unrecognized YouTube URL.", "url": url}
# --- END YOUTUBE TOOL ---
API_KEY = os.getenv("GEMINI_API_KEY")
HF_API_TOKEN = os.getenv("HF_SPACE_TOKEN") # Kept for potential future HF uses, but not for describe_image
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Update the tools list (removed describe_image and arvix_search)
tools = [
multiply, add, subtract, divide, modulus,
wiki_search,
google_web_search,
read_file_content,
python_interpreter,
Youtube,
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model=MODEL,
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'gemini' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
# --- IMPORTANT NOTE ON HANDLING BINARY BLOB DATA FOR MULTIMODAL LLMs ---
# When read_file_content returns a file_type of "image" or "audio",
# the agent should be able to send the actual binary data of that file
# as part of the message to the LLM. LangChain's ChatGoogleGenerativeAI
# supports this via content parts in HumanMessage.
#
# For this setup, we're assuming the framework (LangGraph/LangChain)
# will correctly handle passing the actual file content when read_file_content
# is called and its output indicates a media type.
#
# A more explicit implementation in the assistant node might look like this
# for real binary file handling if the framework doesn't do it implicitly:
#
# new_messages_to_send = []
# for msg in state["messages"]:
# if isinstance(msg, HumanMessage) and msg.tool_calls:
# # If a tool call to read_file_content happened in the previous turn
# # and it returned a media type, we might need to get the file data
# # and append it to the message parts. This logic is complex and
# # depends heavily on how tool outputs are structured and passed.
# # For simplicity in this template, we assume direct handling by the LLM
# # if the tool output indicates media, and the file itself is accessible
# # via the environment.
# pass # Keep original message, tool output will follow
# elif isinstance(msg, HumanMessage) and any(part.get("file_type") in ["image", "audio"] for part in msg.content if isinstance(part, dict)):
# # This is a conceptual example for if the HumanMessage itself contains file data
# # or a reference that needs to be resolved into data.
# # You'd need to load the actual file bytes here.
# # e.g., if msg.content was like: [{"type": "file_reference", "file_path": "image.png"}]
# # with open(msg.content[0]["file_path"], "rb") as f:
# # file_bytes = f.read()
# # new_messages_to_send.append(
# # HumanMessage(
# # content=[
# # {"type": "text", "text": "Here is the media content:"},
# # {"type": "image_data" if "image" in msg.content[0]["file_type"] else "audio_data", "data": base64.b64encode(file_bytes).decode('utf-8'), "media_type": "image/png" if "image" in msg.content[0]["file_type"] else "audio/mp3"}
# # ]
# # )
# # )
# else:
# new_messages_to_send.append(msg)
# llm_response = llm_with_tools.invoke([sys_msg] + new_messages_to_send)
# --- END IMPORTANT NOTE ---
llm_response = llm_with_tools.invoke(messages_to_send,{"recursion_limit": 25}) # For now, keep as is, rely on framework
print(f"LLM Raw Response: {llm_response}")
return {"messages": [llm_response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
pass