File size: 39,397 Bytes
fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 24a10ca fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c68a08b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 37bc974 fa69746 37bc974 d4539da b219614 0fffd32 c26d87b 1349ceb b219614 1349ceb b219614 1349ceb b219614 c26d87b 1349ceb c26d87b 1349ceb b219614 1349ceb b219614 1349ceb 599f010 1349ceb 0fffd32 d4539da 0fffd32 d4539da 0fffd32 d4539da 0fffd32 c26d87b 0fffd32 c26d87b 0fffd32 d4539da 0fffd32 c26d87b 0fffd32 c26d87b 0fffd32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
"""
Dashboard Narrator - Powered by OpenRouter.ai
A tool to analyze dashboard PDFs and images and generate comprehensive reports.
"""
# Import required libraries
import os
import time
import threading
import io
import base64
import json
import requests
from PyPDF2 import PdfReader
from PIL import Image
import markdown
from weasyprint import HTML, CSS
from weasyprint.text.fonts import FontConfiguration
from pdf2image import convert_from_bytes
import gradio as gr
# Create a global progress tracker
class ProgressTracker:
def __init__(self):
self.progress = 0
self.message = "Ready"
self.is_processing = False
self.lock = threading.Lock()
def update(self, progress, message="Processing..."):
with self.lock:
self.progress = progress
self.message = message
def get_status(self):
with self.lock:
return f"{self.message} ({self.progress:.1f}%)"
def start_processing(self):
with self.lock:
self.is_processing = True
self.progress = 0
self.message = "Starting..."
def end_processing(self):
with self.lock:
self.is_processing = False
self.progress = 100
self.message = "Complete"
# Create a global instance
progress_tracker = ProgressTracker()
output_status = None
# Function to update the Gradio interface with progress
def update_progress():
global output_status
while progress_tracker.is_processing:
status = progress_tracker.get_status()
if output_status is not None:
output_status.update(value=status)
time.sleep(0.5)
return
# OpenRouter Client for making API calls
class OpenRouterClient:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://openrouter.ai/api/v1"
def messages_create(self, model, messages, system=None, temperature=0.7, max_tokens=None):
"""Send messages to the OpenRouter API and return the response"""
url = f"{self.base_url}/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": messages,
"temperature": temperature,
}
# Add system message if provided
if system:
payload["messages"].insert(0, {"role": "system", "content": system})
# Add max_tokens if provided
if max_tokens:
payload["max_tokens"] = max_tokens
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status() # Raise an exception for HTTP errors
result = response.json()
# Format the response to match the expected structure
formatted_response = type('obj', (object,), {
'content': [
type('obj', (object,), {
'text': result['choices'][0]['message']['content']
})
]
})
return formatted_response
except requests.exceptions.RequestException as e:
print(f"API request error: {str(e)}")
if hasattr(e, 'response') and e.response:
print(f"Response: {e.response.text}")
raise
# Supported languages configuration
SUPPORTED_LANGUAGES = {
"italiano": {
"code": "it",
"name": "Italiano",
"report_title": "Analisi Dashboard",
"report_subtitle": "Report Dettagliato",
"date_label": "Data",
"system_prompt": "Sei un esperto analista di business intelligence specializzato nell'interpretazione di dashboard e dati visualizzati. Fornisci analisi in italiano approfondite e insight actionable basati sui dati forniti.",
"section_title": "ANALISI SEZIONE",
"multi_doc_title": "ANALISI DASHBOARD {index}"
},
"english": {
"code": "en",
"name": "English",
"report_title": "Dashboard Analysis",
"report_subtitle": "Detailed Report",
"date_label": "Date",
"system_prompt": "You are an expert business intelligence analyst specialized in interpreting dashboards and data visualizations. Provide in-depth analysis and actionable insights based on the data provided.",
"section_title": "SECTION ANALYSIS",
"multi_doc_title": "DASHBOARD {index} ANALYSIS"
},
"franΓ§ais": {
"code": "fr",
"name": "FranΓ§ais",
"report_title": "Analyse de Tableau de Bord",
"report_subtitle": "Rapport DΓ©taillΓ©",
"date_label": "Date",
"system_prompt": "Vous Γͺtes un analyste expert en business intelligence spΓ©cialisΓ© dans l'interprΓ©tation des tableaux de bord et des visualisations de donnΓ©es. Fournissez en franΓ§ais une analyse approfondie et des insights actionnables basΓ©s sur les donnΓ©es fournies.",
"section_title": "ANALYSE DE SECTION",
"multi_doc_title": "ANALYSE DU TABLEAU DE BORD {index}"
},
"espaΓ±ol": {
"code": "es",
"name": "EspaΓ±ol",
"report_title": "AnΓ‘lisis de Dashboard",
"report_subtitle": "Informe Detallado",
"date_label": "Fecha",
"system_prompt": "Eres un analista experto en inteligencia empresarial especializado en interpretar dashboards y visualizaciones de datos. Proporciona en espaΓ±ol un anΓ‘lisis en profundidad e insights accionables basados en los datos proporcionados.",
"section_title": "ANΓLISIS DE SECCIΓN",
"multi_doc_title": "ANΓLISIS DEL DASHBOARD {index}"
},
"deutsch": {
"code": "de",
"name": "Deutsch",
"report_title": "Dashboard-Analyse",
"report_subtitle": "Detaillierter Bericht",
"date_label": "Datum",
"system_prompt": "Sie sind ein Experte fΓΌr Business Intelligence-Analyse, der auf die Interpretation von Dashboards und Datenvisualisierungen spezialisiert ist. Bieten Sie auf Deutsch eine eingehende Analyse und umsetzbare Erkenntnisse auf Grundlage der bereitgestellten Daten.",
"section_title": "ABSCHNITTSANALYSE",
"multi_doc_title": "DASHBOARD-ANALYSE {index}"
}
}
# OpenRouter models - Updated with new models
DEFAULT_MODEL = "anthropic/claude-sonnet-4"
OPENROUTER_MODELS = [
"anthropic/claude-sonnet-4",
"anthropic/claude-3.7-sonnet",
"openai/gpt-4.1",
"openai/o4-mini-high",
"openai/gpt-4.1-mini",
"google/gemini-2.5-flash-preview-05-20",
"google/gemini-2.5-pro-preview-03-25",
"moonshotai/kimi-vl-a3b-thinking:free",
"microsoft/phi-4-multimodal-instruct",
"qwen/qwen2.5-vl-72b-instruct:free",
"openrouter/optimus-alpha"
]
# Utility Functions
def extract_text_from_pdf(pdf_bytes):
"""Extract text from a PDF file."""
try:
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
text = ""
for page_num in range(len(pdf_reader.pages)):
extracted = pdf_reader.pages[page_num].extract_text()
if extracted:
text += extracted + "\n"
return text
except Exception as e:
print(f"Error extracting text from PDF: {str(e)}")
return ""
def get_file_type(file_path):
"""Determine the file type based on file extension."""
if file_path.lower().endswith('.pdf'):
return 'pdf'
elif file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
return 'image'
else:
return 'unknown'
def load_image_from_file(file_path):
"""Load an image from file path."""
try:
image = Image.open(file_path)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return image
except Exception as e:
print(f"Error loading image from {file_path}: {str(e)}")
return None
def load_image_from_bytes(image_bytes):
"""Load an image from bytes."""
try:
image = Image.open(io.BytesIO(image_bytes))
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return image
except Exception as e:
print(f"Error loading image from bytes: {str(e)}")
return None
def divide_image_vertically(image, num_sections):
"""Divide an image vertically into sections."""
width, height = image.size
section_height = height // num_sections
sections = []
for i in range(num_sections):
top = i * section_height
bottom = height if i == num_sections - 1 else (i + 1) * section_height
section = image.crop((0, top, width, bottom))
sections.append(section)
print(f"Section {i+1}: size {section.width}x{section.height} pixels")
return sections
def encode_image_with_resize(image, max_size_mb=4.5):
"""Encode an image in base64, resizing if necessary."""
max_bytes = max_size_mb * 1024 * 1024
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
current_size = len(img_byte_arr.getvalue())
if current_size > max_bytes:
scale_factor = (max_bytes / current_size) ** 0.5
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
img_byte_arr = io.BytesIO()
resized_image.save(img_byte_arr, format='PNG', optimize=True)
print(f"Image resized from {current_size/1024/1024:.2f}MB to {len(img_byte_arr.getvalue())/1024/1024:.2f}MB")
image = resized_image
else:
print(f"Image size acceptable: {current_size/1024/1024:.2f}MB")
buffer = io.BytesIO()
image.save(buffer, format="PNG", optimize=True)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
# Core Analysis Functions
def analyze_dashboard_section(client, model, section_number, total_sections, image_section, full_text, language, goal_description=None):
"""Analyze a vertical section of the dashboard in the specified language."""
print(f"Analyzing section {section_number}/{total_sections} in {language['name']} using {model}...")
try:
encoded_image = encode_image_with_resize(image_section)
except Exception as e:
print(f"Error encoding section {section_number}: {str(e)}")
return f"Error analyzing section {section_number}: {str(e)}"
section_prompt = f"""
Act as a senior data analyst examining this dashboard section for Customer Experience purpose.\n
Your analysis will be shared with top executives to inform about Customer Experience improvements and customer satisfaction level.\n
# Dashboard Analysis - Section {section_number} of {total_sections}\n
You are analyzing section {section_number} of {total_sections} of a long vertical dashboard. This is part of a broader analysis.\n
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
For this specific section:\n
1. Describe what these visualizations show, including their type (e.g., bar chart, line graph) and the data they represent\n
2. Quantitatively analyze the data, noting specific values, percentages, and numeric trends\n
3. Identify significant patterns, anomalies, or outliers visible in the data\n
4. Provide 2-3 actionable insights based on this analysis, explaining their business implications\n
5. Suggest possible reasons for any notable trends or unexpected findings\n
Focus exclusively on the visible section. Don't reference or speculate about unseen dashboard elements.\n
Answer completely in {language['name']}.\n\n
# Text extracted from the complete dashboard:\n
{full_text[:10000] if full_text else "No text available for this image."}
# Image of this dashboard section:
[BASE64 IMAGE: {encoded_image[:20]}...]
This is a dashboard visualization showing various metrics and charts. Please analyze the content visible in this image.
"""
# Create message with image for vision models
message_content = [
{
"type": "text",
"text": section_prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{encoded_image}"
}
}
]
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": message_content}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=10000
)
return response.content[0].text
except Exception as e:
print(f"Error analyzing section {section_number}: {str(e)}")
return f"Error analyzing section {section_number}: {str(e)}"
def create_comprehensive_report(client, model, section_analyses, full_text, language, goal_description=None):
"""Create a unified comprehensive report based on individual section analyses."""
print(f"Generating final comprehensive report in {language['name']} using {model}...")
comprehensive_prompt = f"""
# Comprehensive Dashboard Analysis Request
You have analyzed a long vertical dashboard in multiple sections. Now you need to create a unified and coherent report based on all the partial analyses.\n
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
Here are the analyses of the individual dashboard sections:\n
{section_analyses}\n\n
Based on these partial analyses, generate a professional, structured, and coherent report that includes:\n
1. Executive Summary - Include key metrics, major findings, and critical recommendations (limit to 1 page equivalent)\n
2. Dashboard Performance Overview - Add a section that evaluates the overall health metrics before diving into categories\n
3 Detailed Analysis by Category - Keep this, it's essential\n
4 Trend Analysis - Broaden from just temporal to include cross-category patterns\n
5 Critical Issues and Opportunities - Combine anomalies with positive outliers to provide balanced insights\n
6 Strategic Implications and Recommendations - Consolidate your insights and recommendations into a single, stronger section\n
7 Implementation Roadmap - Convert your conclusions into a prioritized action plan with timeframes\n
8 Appendix: Monitoring Improvements - Move the monitoring suggestions to an appendix unless they're a primary focus\n\n
Integrate information from all sections to create a coherent and complete report.\n\n
# Text extracted from the complete dashboard:\n
{full_text[:10000] if full_text else "No text available for this image."}
"""
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": comprehensive_prompt}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=10000
)
return response.content[0].text
except Exception as e:
print(f"Error creating comprehensive report: {str(e)}")
return f"Error creating comprehensive report: {str(e)}"
def create_multi_dashboard_comparative_report(client, model, individual_reports, language, goal_description=None):
"""Create a comparative report analyzing multiple dashboards together."""
print(f"Generating comparative report for multiple dashboards in {language['name']} using {model}...")
comparative_prompt = f"""
# Multi-Dashboard Comparative Analysis Request
You have analyzed multiple dashboards individually. Now you need to create a comparative analysis report that identifies patterns, similarities, differences, and insights across all dashboards.
{f"The analysis objective is: {goal_description}" if goal_description else ""}
Here are the analyses of the individual dashboards:
{individual_reports}
Based on these individual analyses, generate a professional, structured comparative report that includes:
1. Executive Overview of All Dashboards
2. Comparative Analysis of Key Metrics
3. Cross-Dashboard Patterns and Trends
4. Notable Differences Between Dashboards
5. Integrated Insights from All Sources
6. Comprehensive Strategic Recommendations
7. Suggestions for Cross-Dashboard Monitoring Improvements
8. Conclusions and Integrated Next Steps
Integrate information from all dashboards to create a coherent comparative report.
"""
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": comparative_prompt}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=12000
)
return response.content[0].text
except Exception as e:
print(f"Error creating comparative report: {str(e)}")
return f"Error creating comparative report: {str(e)}"
def markdown_to_pdf(markdown_content, output_filename, language):
"""Convert Markdown content to a well-formatted PDF."""
print(f"Converting Markdown report to PDF in {language['name']}...")
css = CSS(string='''
@page { margin: 1.5cm; }
body { font-family: Arial, sans-serif; line-height: 1.5; font-size: 11pt; }
h1 { color: #2c3e50; font-size: 22pt; margin-top: 1cm; margin-bottom: 0.5cm; page-break-after: avoid; }
h2 { color: #3498db; font-size: 16pt; margin-top: 0.8cm; margin-bottom: 0.3cm; page-break-after: avoid; }
p { margin-bottom: 0.3cm; text-align: justify; }
''')
today = time.strftime("%d/%m/%Y")
cover_page = f"""
<div style="text-align: center; height: 100vh; display: flex; flex-direction: column; justify-content: center; align-items: center;">
<h1 style="font-size: 26pt; color: #2c3e50;">{language['report_title']}</h1>
<h2 style="font-size: 14pt; color: #7f8c8d;">{language['report_subtitle']}</h2>
<p style="font-size: 12pt; color: #7f8c8d;">{language['date_label']}: {today}</p>
</div>
<div style="page-break-after: always;"></div>
"""
html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code'])
full_html = f"""
<!DOCTYPE html>
<html lang="{language['code']}">
<head><meta charset="UTF-8"><title>{language['report_title']}</title></head>
<body>{cover_page}{html_content}</body>
</html>
"""
font_config = FontConfiguration()
HTML(string=full_html).write_pdf(output_filename, stylesheets=[css], font_config=font_config)
print(f"PDF created successfully: {output_filename}")
return output_filename
def analyze_vertical_dashboard(client, model, file_data, file_type, language, goal_description=None, num_sections=4, dashboard_index=None):
"""Analyze a vertical dashboard by dividing it into sections. Supports both PDF and image files."""
dashboard_marker = f" {dashboard_index}" if dashboard_index is not None else ""
total_dashboards = progress_tracker.total_dashboards if hasattr(progress_tracker, 'total_dashboards') else 1
dashboard_progress_base = ((dashboard_index - 1) / total_dashboards * 100) if dashboard_index is not None else 0
dashboard_progress_step = (100 / total_dashboards) if total_dashboards > 0 else 100
progress_tracker.update(dashboard_progress_base, f"πΌοΈ Analyzing dashboard{dashboard_marker}...")
print(f"πΌοΈ Analyzing dashboard{dashboard_marker}...")
# Extract text if it's a PDF
full_text = ""
if file_type == 'pdf':
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.1, f"π Extracting text from dashboard{dashboard_marker}...")
print(f"π Extracting full text from PDF...")
full_text = extract_text_from_pdf(file_data)
if not full_text or len(full_text.strip()) < 100:
print("β οΈ Limited text extracted from PDF. Analysis will rely primarily on images.")
else:
print(f"β
Extracted {len(full_text)} characters of text from PDF.")
else:
print("π Image file detected - no text extraction needed.")
# Convert to image(s)
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.2, f"πΌοΈ Converting dashboard{dashboard_marker} to images...")
print("πΌοΈ Processing image...")
try:
if file_type == 'pdf':
# Convert PDF to images
pdf_images = convert_from_bytes(file_data, dpi=150)
if not pdf_images:
print("β Unable to convert PDF to images.")
return None, "Error: Unable to convert PDF to images."
print(f"β
PDF converted to {len(pdf_images)} image pages.")
main_image = pdf_images[0]
else:
# Load image directly
main_image = load_image_from_bytes(file_data)
if main_image is None:
print("β Unable to load image.")
return None, "Error: Unable to load image."
print(f"β
Image loaded successfully.")
print(f"Main image size: {main_image.width}x{main_image.height} pixels")
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.3, f"Dividing dashboard{dashboard_marker} into {num_sections} sections...")
print(f"Dividing image into {num_sections} vertical sections...")
image_sections = divide_image_vertically(main_image, num_sections)
print(f"β
Image divided into {len(image_sections)} sections.")
except Exception as e:
print(f"β Error processing image: {str(e)}")
return None, f"Error: {str(e)}"
section_analyses = []
section_progress_step = dashboard_progress_step * 0.4 / len(image_sections)
for i, section in enumerate(image_sections):
section_progress = dashboard_progress_base + dashboard_progress_step * 0.3 + section_progress_step * i
progress_tracker.update(section_progress, f"Analyzing section {i+1}/{len(image_sections)} of dashboard{dashboard_marker}...")
print(f"\n{'='*50}")
print(f"Processing section {i+1}/{len(image_sections)}...")
section_result = analyze_dashboard_section(
client,
model,
i+1,
len(image_sections),
section,
full_text,
language,
goal_description
)
if section_result:
section_analyses.append(f"\n## {language['section_title']} {i+1}\n{section_result}")
print(f"β
Analysis of section {i+1} completed.")
else:
section_analyses.append(f"\n## {language['section_title']} {i+1}\nAnalysis not available for this section.")
print(f"β οΈ Analysis of section {i+1} not available.")
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.7, f"Generating final report for dashboard{dashboard_marker}...")
print("\n" + "="*50)
print(f"All section analyses completed. Generating report...")
combined_sections = "\n".join(section_analyses)
# If dashboard index is provided, add a header for the dashboard
if dashboard_index is not None:
dashboard_header = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n"
combined_sections = dashboard_header + combined_sections
final_report = create_comprehensive_report(client, model, combined_sections, full_text, language, goal_description)
# If dashboard index is provided, prepend it to the report
if dashboard_index is not None and dashboard_index > 1:
# Only add header if it doesn't already exist (might have been added by Claude)
if not final_report.startswith(f"# {language['multi_doc_title'].format(index=dashboard_index)}"):
final_report = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n{final_report}"
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.9, f"Finalizing dashboard{dashboard_marker} analysis...")
return final_report, combined_sections
def get_available_models(api_key):
"""Get available models from OpenRouter API."""
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.get("https://openrouter.ai/api/v1/models", headers=headers)
if response.status_code == 200:
models_data = response.json()
available_models = [model["id"] for model in models_data.get("data", [])]
# First add our preferred models at the top if they're available
sorted_models = [model for model in OPENROUTER_MODELS if model in available_models]
# Then add any additional models not in our predefined list
additional_models = [model for model in available_models if model not in OPENROUTER_MODELS]
additional_models.sort()
all_models = ["custom"] + sorted_models + additional_models
return all_models
else:
print(f"Error fetching models: {response.status_code}")
return ["custom"] + OPENROUTER_MODELS
except Exception as e:
print(f"Error fetching models: {str(e)}")
return ["custom"] + OPENROUTER_MODELS
def process_multiple_dashboards(api_key, files, language_code="it", goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
"""Process multiple dashboard files (PDF/images) and create individual and comparative reports."""
# Start progress tracking
progress_tracker.start_processing()
progress_tracker.total_dashboards = len(files)
# Step 1: Initialize language settings and API client
progress_tracker.update(1, "Initializing analysis...")
language = None
for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
if lang_data['code'] == language_code:
language = lang_data
break
if not language:
print(f"β οΈ Language '{language_code}' not supported. Using Italian as fallback.")
language = SUPPORTED_LANGUAGES['italiano']
print(f"π Selected language: {language['name']}")
if not api_key:
progress_tracker.update(100, "β οΈ Error: API key not provided.")
progress_tracker.end_processing()
print("β οΈ Error: API key not provided.")
return None, None, "Error: API key not provided."
try:
client = OpenRouterClient(api_key=api_key)
print("β
OpenRouter client initialized successfully.")
except Exception as e:
progress_tracker.update(100, f"β Error initializing client: {str(e)}")
progress_tracker.end_processing()
print(f"β Error initializing client: {str(e)}")
return None, None, f"Error: {str(e)}"
# Determine which model to use
model = custom_model if model_name == "custom" and custom_model else model_name
print(f"π€ Using model: {model}")
# Step 2: Process each dashboard individually
individual_reports = []
individual_analyses = []
for i, (file_data, file_type) in enumerate(files):
dashboard_progress_base = (i / len(files) * 80) # 80% of progress for dashboard analysis
progress_tracker.update(dashboard_progress_base, f"Processing dashboard {i+1}/{len(files)}...")
print(f"\n{'#'*60}")
print(f"Processing dashboard {i+1}/{len(files)} (Type: {file_type})...")
report, analysis = analyze_vertical_dashboard(
client=client,
model=model,
file_data=file_data,
file_type=file_type,
language=language,
goal_description=goal_description,
num_sections=num_sections,
dashboard_index=i+1
)
if report:
individual_reports.append(report)
individual_analyses.append(analysis)
print(f"β
Analysis of dashboard {i+1} completed.")
else:
print(f"β Analysis of dashboard {i+1} failed.")
# For Hugging Face Space: use tmp directory for file output
tmp_dir = "/tmp"
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir, exist_ok=True)
# Step 3: Generate output files
progress_tracker.update(80, "Generating output files...")
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_files = []
# Create individual report files
for i, report in enumerate(individual_reports):
file_progress = 80 + (i / len(individual_reports) * 10) # 10% for creating files
progress_tracker.update(file_progress, f"Creating files for dashboard {i+1}...")
md_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.md")
pdf_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.pdf")
with open(md_filename, 'w', encoding='utf-8') as f:
f.write(report)
output_files.append(md_filename)
try:
pdf_path = markdown_to_pdf(report, pdf_filename, language)
output_files.append(pdf_filename)
except Exception as e:
print(f"β οΈ Error converting dashboard {i+1} to PDF: {str(e)}")
# If there are multiple dashboards, create a comparative report
comparative_report = None
if len(individual_reports) > 1:
progress_tracker.update(90, "Creating comparative analysis...")
print("\n" + "#"*60)
print("Creating comparative analysis of all dashboards...")
# Combined report content
all_reports_content = "\n\n".join(individual_reports)
# Generate comparative analysis
comparative_report = create_multi_dashboard_comparative_report(
client=client,
model=model,
individual_reports=all_reports_content,
language=language,
goal_description=goal_description
)
# Save comparative report
progress_tracker.update(95, "Saving comparative analysis files...")
comparative_md = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.md")
comparative_pdf = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.pdf")
with open(comparative_md, 'w', encoding='utf-8') as f:
f.write(comparative_report)
output_files.append(comparative_md)
try:
pdf_path = markdown_to_pdf(comparative_report, comparative_pdf, language)
output_files.append(comparative_pdf)
except Exception as e:
print(f"β οΈ Error converting comparative report to PDF: {str(e)}")
# Complete progress tracking
progress_tracker.update(100, "β
Analysis completed successfully!")
progress_tracker.end_processing()
# Return the combined report content and all output files
combined_content = "\n\n---\n\n".join(individual_reports)
if len(individual_reports) > 1 and comparative_report:
combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"
return combined_content, output_files, "β
Analysis completed successfully!"
# Wrapper function for Gradio interface
def process_dashboard(api_key, files, language_name, goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
"""Process dashboard files (PDF/images) and generate reports (wrapper function for Gradio interface)."""
# Start a thread to update progress
progress_thread = threading.Thread(target=update_progress)
progress_thread.daemon = True
progress_thread.start()
# Convert language name to language code
language_code = "en" # Default to English
for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
if lang_data['name'].lower() == language_name.lower():
language_code = lang_data['code']
break
# Process the uploaded files
processed_files = []
if files is not None:
for file in files:
try:
# Handle different Gradio file formats
file_path = None
if isinstance(file, dict) and 'name' in file:
# Newer Gradio File component format
file_path = file['name']
elif isinstance(file, str):
# Older Gradio File component format
file_path = file
else:
# Try to get the path from the file object
if hasattr(file, 'name'):
file_path = file.name
elif hasattr(file, 'path'):
file_path = file.path
if file_path:
# Determine file type
file_type = get_file_type(file_path)
if file_type == 'unknown':
print(f"β οΈ Unsupported file type for {file_path}")
continue
# Read file data
with open(file_path, 'rb') as f:
file_data = f.read()
processed_files.append((file_data, file_type))
print(f"β
Processed {file_path} as {file_type}")
else:
print(f"β οΈ Could not determine file path for uploaded file")
except Exception as e:
print(f"β Error processing uploaded file: {str(e)}")
continue
if not processed_files:
error_message = "No valid files were uploaded or processed."
progress_tracker.update(100, error_message)
progress_tracker.end_processing()
return None, None, error_message
# Call the actual processing function
try:
combined_content, output_files, status = process_multiple_dashboards(
api_key=api_key,
files=processed_files,
language_code=language_code,
goal_description=goal_description,
num_sections=num_sections,
model_name=model_name,
custom_model=custom_model
)
return combined_content, output_files, status
except Exception as e:
error_message = f"Error processing dashboards: {str(e)}"
print(error_message)
progress_tracker.update(100, error_message)
progress_tracker.end_processing()
return None, None, error_message
# Gradio Interface Functions
def toggle_custom_model(choice):
"""Toggle visibility of custom model input based on selection."""
return {"visible": choice == "custom"}
def refresh_models(api_key):
"""Refresh the list of available models based on the API key."""
if not api_key:
return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
try:
available_models = get_available_models(api_key)
return gr.Dropdown(choices=available_models, value=DEFAULT_MODEL)
except Exception as e:
print(f"Error refreshing models: {str(e)}")
return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
# Define the Gradio interface
with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Dashboard Narrator - Powered by OpenRouter.ai
Unlock the hidden stories in your dashboards!<br>
Dashboard Narrator leverages advanced AI models through OpenRouter.ai to dissect your PDF reports and images,<br>
analyze each segment with expert precision, and craft comprehensive insights in your preferred language.<br><br>
Turn complex data visualizations into clear, strategic recommendations and uncover trends you might have missed.<br>
From executive summaries to detailed breakdowns, get the full narrative behind your numbers in just a few clicks.<br><br>
**β¨ New Features:**
- Support for PNG and JPG image analysis
- Enhanced with Claude Sonnet 4 and Gemini 2.5 Flash models
- Multi-format dashboard analysis capabilities
""")
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(label="OpenRouter API Key", placeholder="Enter your OpenRouter API key...", type="password")
refresh_btn = gr.Button("π Refresh Available Models", size="sm")
model_choice = gr.Dropdown(
choices=["custom"] + OPENROUTER_MODELS,
value=DEFAULT_MODEL,
label="Select Model"
)
custom_model = gr.Textbox(
label="Custom Model ID",
placeholder="Enter custom model ID (e.g., anthropic/claude-3-opus:latest)...",
visible=False
)
language = gr.Dropdown(
choices=["Italiano", "English", "FranΓ§ais", "EspaΓ±ol", "Deutsch"],
value="English",
label="Report Language"
)
num_sections = gr.Slider(
minimum=2,
maximum=10,
value=4,
step=1,
label="Number of Vertical Sections per Dashboard"
)
goal = gr.Textbox(
label="Analysis Goal (optional)",
placeholder="E.g., Analyze Q1 2024 sales KPIs..."
)
files = gr.File(
label="Upload Dashboards (PDF, PNG, JPG)",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
file_count="multiple"
)
analyze_btn = gr.Button("π Analyze Dashboards", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Report"):
output_md = gr.Markdown(label="Analysis Report", value="")
with gr.Tab("Output Files"):
output_files = gr.File(label="Download Files")
output_status = gr.Textbox(label="Progress", placeholder="Upload dashboards and press Analyze...", interactive=False)
# Progress component doesn't accept label in Gradio 5.21.0
progress_bar = gr.Progress()
# Handle model dropdown change
model_choice.change(
fn=toggle_custom_model,
inputs=model_choice,
outputs=custom_model,
)
# Handle refresh models button
refresh_btn.click(
fn=refresh_models,
inputs=api_key,
outputs=model_choice,
)
# Handle analyze button
analyze_btn.click(
fn=process_dashboard,
inputs=[api_key, files, language, goal, num_sections, model_choice, custom_model],
outputs=[output_md, output_files, output_status]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |