File size: 52,984 Bytes
fa69746 c26d87b fa69746 4f16978 fa69746 eb5ed27 aacf5b0 fa69746 eb5ed27 aacf5b0 fa69746 aacf5b0 fa69746 eb5ed27 aacf5b0 fa69746 aacf5b0 eb5ed27 aacf5b0 fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 24a10ca fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c68a08b fa69746 4f16978 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 c26d87b fa69746 4f16978 fa69746 4f16978 fa69746 4f16978 fa69746 4f16978 fa69746 4f16978 fa69746 4f16978 37bc974 fa69746 37bc974 d4539da b219614 eb5ed27 c26d87b aacf5b0 eb5ed27 aacf5b0 eb5ed27 1349ceb b219614 1349ceb b219614 1349ceb b219614 4f16978 aacf5b0 4f16978 aacf5b0 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b 4f16978 c26d87b aacf5b0 1349ceb 4f16978 1349ceb c26d87b 1349ceb b219614 1349ceb b219614 4f16978 aacf5b0 4f16978 aacf5b0 4f16978 aacf5b0 4f16978 599f010 1349ceb 4f16978 1349ceb aacf5b0 0fffd32 d4539da 0fffd32 d4539da 0fffd32 d4539da 0fffd32 eb5ed27 0fffd32 c26d87b 0fffd32 c26d87b eb5ed27 b5ae635 0fffd32 aacf5b0 0fffd32 4f16978 b5ae635 4f16978 b5ae635 4f16978 0fffd32 d4539da b5ae635 0fffd32 b5ae635 0fffd32 b5ae635 0fffd32 b5ae635 0fffd32 b5ae635 0fffd32 c26d87b b5ae635 0fffd32 4f16978 0fffd32 4f16978 b5ae635 4f16978 b5ae635 4f16978 b5ae635 4f16978 0fffd32 aacf5b0 0fffd32 eb5ed27 0fffd32 c26d87b aacf5b0 4f16978 0fffd32 4f16978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
"""
Dashboard Narrator - Powered by OpenRouter.ai
A tool to analyze dashboard PDFs and images and generate comprehensive reports.
"""
# Import required libraries
import os
import time
import threading
import io
import base64
import json
import requests
from PyPDF2 import PdfReader
from PIL import Image
import markdown
from weasyprint import HTML, CSS
from weasyprint.text.fonts import FontConfiguration
from pdf2image import convert_from_bytes
import gradio as gr
import tempfile
import shutil
# Create a global progress tracker
class ProgressTracker:
def __init__(self):
self.progress = 0
self.message = "Ready"
self.is_processing = False
self.lock = threading.Lock()
self.gradio_progress = None # Store Gradio progress object
self.progress_bar = None # Store Gradio progress bar component
def update(self, progress, message="Processing..."):
with self.lock:
self.progress = progress
self.message = message
# Update Gradio progress bar if available
if self.gradio_progress is not None:
try:
self.gradio_progress(progress / 100, desc=message)
except:
pass # Ignore errors if progress object is not valid
# Update visible progress bar component if available
if self.progress_bar is not None:
try:
# Create HTML progress bar
progress_html = f"""
<div style="background-color: #f0f0f0; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ddd;">
<div style="background: linear-gradient(90deg, #4CAF50 0%, #45a049 100%); width: {progress}%; height: 25px; border-radius: 8px; transition: width 0.3s ease;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #333;">
{message} - {progress:.1f}%
</div>
</div>
"""
self.progress_bar.update(value=progress_html, visible=True)
except Exception as e:
print(f"Error updating progress bar: {e}")
pass
def get_status(self):
with self.lock:
return f"{self.message} ({self.progress:.1f}%)"
def start_processing(self, gradio_progress=None, progress_bar=None):
with self.lock:
self.is_processing = True
self.progress = 0
self.message = "Starting..."
self.gradio_progress = gradio_progress
self.progress_bar = progress_bar
# Show progress bar
if self.progress_bar is not None:
try:
start_html = """
<div style="background-color: #f0f0f0; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ddd;">
<div style="background: linear-gradient(90deg, #4CAF50 0%, #45a049 100%); width: 0%; height: 25px; border-radius: 8px; transition: width 0.3s ease;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #333;">
Starting... - 0.0%
</div>
</div>
"""
self.progress_bar.update(value=start_html, visible=True)
except Exception as e:
print(f"Error starting progress bar: {e}")
pass
def end_processing(self):
with self.lock:
self.is_processing = False
self.progress = 100
self.message = "Complete"
# Show completion progress bar
if self.progress_bar is not None:
try:
complete_html = """
<div style="background-color: #f0f0f0; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ddd;">
<div style="background: linear-gradient(90deg, #4CAF50 0%, #45a049 100%); width: 100%; height: 25px; border-radius: 8px; transition: width 0.3s ease;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #333;">
β
Analysis Complete - 100.0%
</div>
</div>
"""
self.progress_bar.update(value=complete_html, visible=True)
except Exception as e:
print(f"Error ending progress bar: {e}")
pass
self.gradio_progress = None
# Don't reset progress_bar here so it shows the completion state
# Create a global instance
progress_tracker = ProgressTracker()
output_status = None
# Function to update the Gradio interface with progress
def update_progress():
global output_status
while progress_tracker.is_processing:
status = progress_tracker.get_status()
if output_status is not None:
output_status.update(value=status)
time.sleep(0.5)
return
# OpenRouter Client for making API calls
class OpenRouterClient:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://openrouter.ai/api/v1"
def messages_create(self, model, messages, system=None, temperature=0.7, max_tokens=None):
"""Send messages to the OpenRouter API and return the response"""
url = f"{self.base_url}/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": messages,
"temperature": temperature,
}
# Add system message if provided
if system:
payload["messages"].insert(0, {"role": "system", "content": system})
# Add max_tokens if provided
if max_tokens:
payload["max_tokens"] = max_tokens
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status() # Raise an exception for HTTP errors
result = response.json()
# Format the response to match the expected structure
formatted_response = type('obj', (object,), {
'content': [
type('obj', (object,), {
'text': result['choices'][0]['message']['content']
})
]
})
return formatted_response
except requests.exceptions.RequestException as e:
print(f"API request error: {str(e)}")
if hasattr(e, 'response') and e.response:
print(f"Response: {e.response.text}")
raise
# Supported languages configuration
SUPPORTED_LANGUAGES = {
"italiano": {
"code": "it",
"name": "Italiano",
"report_title": "Analisi Dashboard",
"report_subtitle": "Report Dettagliato",
"date_label": "Data",
"system_prompt": "Sei un esperto analista di business intelligence specializzato nell'interpretazione di dashboard e dati visualizzati. Fornisci analisi in italiano approfondite e insight actionable basati sui dati forniti.",
"section_title": "ANALISI SEZIONE",
"multi_doc_title": "ANALISI DASHBOARD {index}"
},
"english": {
"code": "en",
"name": "English",
"report_title": "Dashboard Analysis",
"report_subtitle": "Detailed Report",
"date_label": "Date",
"system_prompt": "You are an expert business intelligence analyst specialized in interpreting dashboards and data visualizations. Provide in-depth analysis and actionable insights based on the data provided.",
"section_title": "SECTION ANALYSIS",
"multi_doc_title": "DASHBOARD {index} ANALYSIS"
},
"franΓ§ais": {
"code": "fr",
"name": "FranΓ§ais",
"report_title": "Analyse de Tableau de Bord",
"report_subtitle": "Rapport DΓ©taillΓ©",
"date_label": "Date",
"system_prompt": "Vous Γͺtes un analyste expert en business intelligence spΓ©cialisΓ© dans l'interprΓ©tation des tableaux de bord et des visualisations de donnΓ©es. Fournissez en franΓ§ais une analyse approfondie et des insights actionnables basΓ©s sur les donnΓ©es fournies.",
"section_title": "ANALYSE DE SECTION",
"multi_doc_title": "ANALYSE DU TABLEAU DE BORD {index}"
},
"espaΓ±ol": {
"code": "es",
"name": "EspaΓ±ol",
"report_title": "AnΓ‘lisis de Dashboard",
"report_subtitle": "Informe Detallado",
"date_label": "Fecha",
"system_prompt": "Eres un analista experto en inteligencia empresarial especializado en interpretar dashboards y visualizaciones de datos. Proporciona en espaΓ±ol un anΓ‘lisis en profundidad e insights accionables basados en los datos proporcionados.",
"section_title": "ANΓLISIS DE SECCIΓN",
"multi_doc_title": "ANΓLISIS DEL DASHBOARD {index}"
},
"deutsch": {
"code": "de",
"name": "Deutsch",
"report_title": "Dashboard-Analyse",
"report_subtitle": "Detaillierter Bericht",
"date_label": "Datum",
"system_prompt": "Sie sind ein Experte fΓΌr Business Intelligence-Analyse, der auf die Interpretation von Dashboards und Datenvisualisierungen spezialisiert ist. Bieten Sie auf Deutsch eine eingehende Analyse und umsetzbare Erkenntnisse auf Grundlage der bereitgestellten Daten.",
"section_title": "ABSCHNITTSANALYSE",
"multi_doc_title": "DASHBOARD-ANALYSE {index}"
}
}
# OpenRouter models - Updated with new models
DEFAULT_MODEL = "anthropic/claude-sonnet-4"
OPENROUTER_MODELS = [
"anthropic/claude-sonnet-4",
"anthropic/claude-3.7-sonnet",
"openai/gpt-4.1",
"openai/o4-mini-high",
"openai/gpt-4.1-mini",
"google/gemini-2.5-flash-preview-05-20",
"google/gemini-2.5-pro-preview-03-25",
"moonshotai/kimi-vl-a3b-thinking:free",
"microsoft/phi-4-multimodal-instruct",
"qwen/qwen2.5-vl-72b-instruct:free",
"openrouter/optimus-alpha"
]
# Utility Functions
def extract_text_from_pdf(pdf_bytes):
"""Extract text from a PDF file."""
try:
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
text = ""
for page_num in range(len(pdf_reader.pages)):
extracted = pdf_reader.pages[page_num].extract_text()
if extracted:
text += extracted + "\n"
return text
except Exception as e:
print(f"Error extracting text from PDF: {str(e)}")
return ""
def get_file_type(file_path):
"""Determine the file type based on file extension."""
if file_path.lower().endswith('.pdf'):
return 'pdf'
elif file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
return 'image'
else:
return 'unknown'
def load_image_from_file(file_path):
"""Load an image from file path."""
try:
image = Image.open(file_path)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return image
except Exception as e:
print(f"Error loading image from {file_path}: {str(e)}")
return None
def load_image_from_bytes(image_bytes):
"""Load an image from bytes."""
try:
image = Image.open(io.BytesIO(image_bytes))
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return image
except Exception as e:
print(f"Error loading image from bytes: {str(e)}")
return None
def divide_image_vertically(image, num_sections):
"""Divide an image vertically into sections."""
width, height = image.size
section_height = height // num_sections
sections = []
for i in range(num_sections):
top = i * section_height
bottom = height if i == num_sections - 1 else (i + 1) * section_height
section = image.crop((0, top, width, bottom))
sections.append(section)
print(f"Section {i+1}: size {section.width}x{section.height} pixels")
return sections
def encode_image_with_resize(image, max_size_mb=4.5):
"""Encode an image in base64, resizing if necessary."""
max_bytes = max_size_mb * 1024 * 1024
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
current_size = len(img_byte_arr.getvalue())
if current_size > max_bytes:
scale_factor = (max_bytes / current_size) ** 0.5
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
img_byte_arr = io.BytesIO()
resized_image.save(img_byte_arr, format='PNG', optimize=True)
print(f"Image resized from {current_size/1024/1024:.2f}MB to {len(img_byte_arr.getvalue())/1024/1024:.2f}MB")
image = resized_image
else:
print(f"Image size acceptable: {current_size/1024/1024:.2f}MB")
buffer = io.BytesIO()
image.save(buffer, format="PNG", optimize=True)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
# Core Analysis Functions
def analyze_dashboard_section(client, model, section_number, total_sections, image_section, full_text, language, goal_description=None):
"""Analyze a vertical section of the dashboard in the specified language."""
print(f"Analyzing section {section_number}/{total_sections} in {language['name']} using {model}...")
try:
encoded_image = encode_image_with_resize(image_section)
except Exception as e:
print(f"Error encoding section {section_number}: {str(e)}")
return f"Error analyzing section {section_number}: {str(e)}"
section_prompt = f"""
Act as a senior data analyst examining this dashboard section for Customer Experience purpose.\n
Your analysis will be shared with top executives to inform about Customer Experience improvements and customer satisfaction level.\n
# Dashboard Analysis - Section {section_number} of {total_sections}\n
You are analyzing section {section_number} of {total_sections} of a long vertical dashboard. This is part of a broader analysis.\n
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
For this specific section:\n
1. Describe what these visualizations show, including their type (e.g., bar chart, line graph) and the data they represent\n
2. Quantitatively analyze the data, noting specific values, percentages, and numeric trends\n
3. Identify significant patterns, anomalies, or outliers visible in the data\n
4. Provide 2-3 actionable insights based on this analysis, explaining their business implications\n
5. Suggest possible reasons for any notable trends or unexpected findings\n
Focus exclusively on the visible section. Don't reference or speculate about unseen dashboard elements.\n
Answer completely in {language['name']}.\n\n
# Text extracted from the complete dashboard:\n
{full_text[:10000] if full_text else "No text available for this image."}
# Image of this dashboard section:
[BASE64 IMAGE: {encoded_image[:20]}...]
This is a dashboard visualization showing various metrics and charts. Please analyze the content visible in this image.
"""
# Create message with image for vision models
message_content = [
{
"type": "text",
"text": section_prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{encoded_image}"
}
}
]
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": message_content}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=10000
)
return response.content[0].text
except Exception as e:
print(f"Error analyzing section {section_number}: {str(e)}")
return f"Error analyzing section {section_number}: {str(e)}"
def create_comprehensive_report(client, model, section_analyses, full_text, language, goal_description=None):
"""Create a unified comprehensive report based on individual section analyses."""
print(f"Generating final comprehensive report in {language['name']} using {model}...")
comprehensive_prompt = f"""
# Comprehensive Dashboard Analysis Request
You have analyzed a long vertical dashboard in multiple sections. Now you need to create a unified and coherent report based on all the partial analyses.\n
{f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
Here are the analyses of the individual dashboard sections:\n
{section_analyses}\n\n
Based on these partial analyses, generate a professional, structured, and coherent report that includes:\n
1. Executive Summary - Include key metrics, major findings, and critical recommendations (limit to 1 page equivalent)\n
2. Dashboard Performance Overview - Add a section that evaluates the overall health metrics before diving into categories\n
3 Detailed Analysis by Category - Keep this, it's essential\n
4 Trend Analysis - Broaden from just temporal to include cross-category patterns\n
5 Critical Issues and Opportunities - Combine anomalies with positive outliers to provide balanced insights\n
6 Strategic Implications and Recommendations - Consolidate your insights and recommendations into a single, stronger section\n
7 Implementation Roadmap - Convert your conclusions into a prioritized action plan with timeframes\n
8 Appendix: Monitoring Improvements - Move the monitoring suggestions to an appendix unless they're a primary focus\n\n
Integrate information from all sections to create a coherent and complete report.\n\n
# Text extracted from the complete dashboard:\n
{full_text[:10000] if full_text else "No text available for this image."}
"""
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": comprehensive_prompt}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=10000
)
return response.content[0].text
except Exception as e:
print(f"Error creating comprehensive report: {str(e)}")
return f"Error creating comprehensive report: {str(e)}"
def create_multi_dashboard_comparative_report(client, model, individual_reports, language, goal_description=None):
"""Create a comparative report analyzing multiple dashboards together."""
print(f"Generating comparative report for multiple dashboards in {language['name']} using {model}...")
comparative_prompt = f"""
# Multi-Dashboard Comparative Analysis Request
You have analyzed multiple dashboards individually. Now you need to create a comparative analysis report that identifies patterns, similarities, differences, and insights across all dashboards.
{f"The analysis objective is: {goal_description}" if goal_description else ""}
Here are the analyses of the individual dashboards:
{individual_reports}
Based on these individual analyses, generate a professional, structured comparative report that includes:
1. Executive Overview of All Dashboards
2. Comparative Analysis of Key Metrics
3. Cross-Dashboard Patterns and Trends
4. Notable Differences Between Dashboards
5. Integrated Insights from All Sources
6. Comprehensive Strategic Recommendations
7. Suggestions for Cross-Dashboard Monitoring Improvements
8. Conclusions and Integrated Next Steps
Integrate information from all dashboards to create a coherent comparative report.
"""
try:
response = client.messages_create(
model=model,
messages=[{"role": "user", "content": comparative_prompt}],
system=language['system_prompt'],
temperature=0.1,
max_tokens=12000
)
return response.content[0].text
except Exception as e:
print(f"Error creating comparative report: {str(e)}")
return f"Error creating comparative report: {str(e)}"
def markdown_to_pdf(markdown_content, output_filename, language):
"""Convert Markdown content to a well-formatted PDF."""
print(f"Converting Markdown report to PDF in {language['name']}...")
css = CSS(string='''
@page { margin: 1.5cm; }
body { font-family: Arial, sans-serif; line-height: 1.5; font-size: 11pt; }
h1 { color: #2c3e50; font-size: 22pt; margin-top: 1cm; margin-bottom: 0.5cm; page-break-after: avoid; }
h2 { color: #3498db; font-size: 16pt; margin-top: 0.8cm; margin-bottom: 0.3cm; page-break-after: avoid; }
p { margin-bottom: 0.3cm; text-align: justify; }
''')
today = time.strftime("%d/%m/%Y")
cover_page = f"""
<div style="text-align: center; height: 100vh; display: flex; flex-direction: column; justify-content: center; align-items: center;">
<h1 style="font-size: 26pt; color: #2c3e50;">{language['report_title']}</h1>
<h2 style="font-size: 14pt; color: #7f8c8d;">{language['report_subtitle']}</h2>
<p style="font-size: 12pt; color: #7f8c8d;">{language['date_label']}: {today}</p>
</div>
<div style="page-break-after: always;"></div>
"""
html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code'])
full_html = f"""
<!DOCTYPE html>
<html lang="{language['code']}">
<head><meta charset="UTF-8"><title>{language['report_title']}</title></head>
<body>{cover_page}{html_content}</body>
</html>
"""
font_config = FontConfiguration()
HTML(string=full_html).write_pdf(output_filename, stylesheets=[css], font_config=font_config)
print(f"PDF created successfully: {output_filename}")
return output_filename
def analyze_vertical_dashboard(client, model, file_data, file_type, language, goal_description=None, num_sections=4, dashboard_index=None):
"""Analyze a vertical dashboard by dividing it into sections. Supports both PDF and image files."""
dashboard_marker = f" {dashboard_index}" if dashboard_index is not None else ""
total_dashboards = progress_tracker.total_dashboards if hasattr(progress_tracker, 'total_dashboards') else 1
dashboard_progress_base = ((dashboard_index - 1) / total_dashboards * 100) if dashboard_index is not None else 0
dashboard_progress_step = (100 / total_dashboards) if total_dashboards > 0 else 100
progress_tracker.update(dashboard_progress_base, f"πΌοΈ Analyzing dashboard{dashboard_marker}...")
print(f"πΌοΈ Analyzing dashboard{dashboard_marker}...")
# Extract text if it's a PDF
full_text = ""
if file_type == 'pdf':
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.1, f"π Extracting text from dashboard{dashboard_marker}...")
print(f"π Extracting full text from PDF...")
full_text = extract_text_from_pdf(file_data)
if not full_text or len(full_text.strip()) < 100:
print("β οΈ Limited text extracted from PDF. Analysis will rely primarily on images.")
else:
print(f"β
Extracted {len(full_text)} characters of text from PDF.")
else:
print("π Image file detected - no text extraction needed.")
# Convert to image(s)
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.2, f"πΌοΈ Converting dashboard{dashboard_marker} to images...")
print("πΌοΈ Processing image...")
try:
if file_type == 'pdf':
# Convert PDF to images
pdf_images = convert_from_bytes(file_data, dpi=150)
if not pdf_images:
print("β Unable to convert PDF to images.")
return None, "Error: Unable to convert PDF to images."
print(f"β
PDF converted to {len(pdf_images)} image pages.")
main_image = pdf_images[0]
else:
# Load image directly
main_image = load_image_from_bytes(file_data)
if main_image is None:
print("β Unable to load image.")
return None, "Error: Unable to load image."
print(f"β
Image loaded successfully.")
print(f"Main image size: {main_image.width}x{main_image.height} pixels")
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.3, f"Dividing dashboard{dashboard_marker} into {num_sections} sections...")
print(f"Dividing image into {num_sections} vertical sections...")
image_sections = divide_image_vertically(main_image, num_sections)
print(f"β
Image divided into {len(image_sections)} sections.")
except Exception as e:
print(f"β Error processing image: {str(e)}")
return None, f"Error: {str(e)}"
section_analyses = []
section_progress_step = dashboard_progress_step * 0.4 / len(image_sections)
for i, section in enumerate(image_sections):
section_progress = dashboard_progress_base + dashboard_progress_step * 0.3 + section_progress_step * i
progress_tracker.update(section_progress, f"Analyzing section {i+1}/{len(image_sections)} of dashboard{dashboard_marker}...")
print(f"\n{'='*50}")
print(f"Processing section {i+1}/{len(image_sections)}...")
section_result = analyze_dashboard_section(
client,
model,
i+1,
len(image_sections),
section,
full_text,
language,
goal_description
)
if section_result:
section_analyses.append(f"\n## {language['section_title']} {i+1}\n{section_result}")
print(f"β
Analysis of section {i+1} completed.")
else:
section_analyses.append(f"\n## {language['section_title']} {i+1}\nAnalysis not available for this section.")
print(f"β οΈ Analysis of section {i+1} not available.")
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.7, f"Generating final report for dashboard{dashboard_marker}...")
print("\n" + "="*50)
print(f"All section analyses completed. Generating report...")
combined_sections = "\n".join(section_analyses)
# If dashboard index is provided, add a header for the dashboard
if dashboard_index is not None:
dashboard_header = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n"
combined_sections = dashboard_header + combined_sections
final_report = create_comprehensive_report(client, model, combined_sections, full_text, language, goal_description)
# If dashboard index is provided, prepend it to the report
if dashboard_index is not None and dashboard_index > 1:
# Only add header if it doesn't already exist (might have been added by Claude)
if not final_report.startswith(f"# {language['multi_doc_title'].format(index=dashboard_index)}"):
final_report = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n{final_report}"
progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.9, f"Finalizing dashboard{dashboard_marker} analysis...")
return final_report, combined_sections
def get_available_models(api_key):
"""Get available models from OpenRouter API."""
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.get("https://openrouter.ai/api/v1/models", headers=headers)
if response.status_code == 200:
models_data = response.json()
available_models = [model["id"] for model in models_data.get("data", [])]
# First add our preferred models at the top if they're available
sorted_models = [model for model in OPENROUTER_MODELS if model in available_models]
# Then add any additional models not in our predefined list
additional_models = [model for model in available_models if model not in OPENROUTER_MODELS]
additional_models.sort()
all_models = ["custom"] + sorted_models + additional_models
return all_models
else:
print(f"Error fetching models: {response.status_code}")
return ["custom"] + OPENROUTER_MODELS
except Exception as e:
print(f"Error fetching models: {str(e)}")
return ["custom"] + OPENROUTER_MODELS
# FIXED: Improved file handling for Gradio compatibility
def create_output_files(individual_reports, comparative_report, language, timestamp):
"""Create output files with proper Gradio compatibility."""
output_files = []
try:
# Create a temporary directory that Gradio can access
temp_dir = tempfile.mkdtemp()
print(f"Created temporary directory: {temp_dir}")
# Create individual report files
for i, report in enumerate(individual_reports):
if report and report.strip(): # Only create files for valid reports
# Create markdown file
md_filename = os.path.join(temp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.md")
try:
with open(md_filename, 'w', encoding='utf-8') as f:
f.write(report)
if os.path.exists(md_filename) and os.path.getsize(md_filename) > 0:
output_files.append(md_filename)
print(f"β
Created markdown file: {md_filename}")
else:
print(f"β οΈ Failed to create valid markdown file for dashboard {i+1}")
except Exception as e:
print(f"β Error creating markdown file for dashboard {i+1}: {str(e)}")
# Create PDF file
pdf_filename = os.path.join(temp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.pdf")
try:
pdf_path = markdown_to_pdf(report, pdf_filename, language)
if os.path.exists(pdf_filename) and os.path.getsize(pdf_filename) > 0:
output_files.append(pdf_filename)
print(f"β
Created PDF file: {pdf_filename}")
else:
print(f"β οΈ Failed to create valid PDF file for dashboard {i+1}")
except Exception as e:
print(f"β Error creating PDF file for dashboard {i+1}: {str(e)}")
# Create comparative report if available
if comparative_report and comparative_report.strip():
# Create comparative markdown file
comparative_md = os.path.join(temp_dir, f"comparative_analysis_{language['code']}_{timestamp}.md")
try:
with open(comparative_md, 'w', encoding='utf-8') as f:
f.write(comparative_report)
if os.path.exists(comparative_md) and os.path.getsize(comparative_md) > 0:
output_files.append(comparative_md)
print(f"β
Created comparative markdown file: {comparative_md}")
else:
print(f"β οΈ Failed to create valid comparative markdown file")
except Exception as e:
print(f"β Error creating comparative markdown file: {str(e)}")
# Create comparative PDF file
comparative_pdf = os.path.join(temp_dir, f"comparative_analysis_{language['code']}_{timestamp}.pdf")
try:
pdf_path = markdown_to_pdf(comparative_report, comparative_pdf, language)
if os.path.exists(comparative_pdf) and os.path.getsize(comparative_pdf) > 0:
output_files.append(comparative_pdf)
print(f"β
Created comparative PDF file: {comparative_pdf}")
else:
print(f"β οΈ Failed to create valid comparative PDF file")
except Exception as e:
print(f"β Error creating comparative PDF file: {str(e)}")
print(f"Total output files created: {len(output_files)}")
return output_files
except Exception as e:
print(f"β Error in create_output_files: {str(e)}")
return []
def process_multiple_dashboards(api_key, files, language_code="it", goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
"""Process multiple dashboard files (PDF/images) and create individual and comparative reports."""
# Start progress tracking
progress_tracker.start_processing()
progress_tracker.total_dashboards = len(files)
# Step 1: Initialize language settings and API client
progress_tracker.update(1, "Initializing analysis...")
language = None
for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
if lang_data['code'] == language_code:
language = lang_data
break
if not language:
print(f"β οΈ Language '{language_code}' not supported. Using Italian as fallback.")
language = SUPPORTED_LANGUAGES['italiano']
print(f"π Selected language: {language['name']}")
if not api_key:
progress_tracker.update(100, "β οΈ Error: API key not provided.")
progress_tracker.end_processing()
print("β οΈ Error: API key not provided.")
return None, None, "Error: API key not provided."
try:
client = OpenRouterClient(api_key=api_key)
print("β
OpenRouter client initialized successfully.")
except Exception as e:
progress_tracker.update(100, f"β Error initializing client: {str(e)}")
progress_tracker.end_processing()
print(f"β Error initializing client: {str(e)}")
return None, None, f"Error: {str(e)}"
# Determine which model to use
model = custom_model if model_name == "custom" and custom_model else model_name
print(f"π€ Using model: {model}")
# Step 2: Process each dashboard individually
individual_reports = []
individual_analyses = []
for i, (file_data, file_type) in enumerate(files):
dashboard_progress_base = (i / len(files) * 80) # 80% of progress for dashboard analysis
progress_tracker.update(dashboard_progress_base, f"Processing dashboard {i+1}/{len(files)}...")
print(f"\n{'#'*60}")
print(f"Processing dashboard {i+1}/{len(files)} (Type: {file_type})...")
report, analysis = analyze_vertical_dashboard(
client=client,
model=model,
file_data=file_data,
file_type=file_type,
language=language,
goal_description=goal_description,
num_sections=num_sections,
dashboard_index=i+1
)
if report:
individual_reports.append(report)
individual_analyses.append(analysis)
print(f"β
Analysis of dashboard {i+1} completed.")
else:
print(f"β Analysis of dashboard {i+1} failed.")
# Step 3: Generate comparative report if multiple dashboards
comparative_report = None
if len(individual_reports) > 1:
progress_tracker.update(80, "Creating comparative analysis...")
print("\n" + "#"*60)
print("Creating comparative analysis of all dashboards...")
# Combined report content
all_reports_content = "\n\n".join(individual_reports)
# Generate comparative analysis
comparative_report = create_multi_dashboard_comparative_report(
client=client,
model=model,
individual_reports=all_reports_content,
language=language,
goal_description=goal_description
)
# Step 4: Create output files with improved handling
progress_tracker.update(90, "Creating output files...")
timestamp = time.strftime("%Y%m%d_%H%M%S")
try:
output_files = create_output_files(individual_reports, comparative_report, language, timestamp)
if not output_files:
error_msg = "No output files were created successfully."
progress_tracker.update(100, f"β οΈ {error_msg}")
progress_tracker.end_processing()
return None, None, error_msg
except Exception as e:
error_msg = f"Error creating output files: {str(e)}"
print(f"β {error_msg}")
progress_tracker.update(100, f"β {error_msg}")
progress_tracker.end_processing()
return None, None, error_msg
# Complete progress tracking
progress_tracker.update(100, "β
Analysis completed successfully!")
progress_tracker.end_processing()
# Return the combined report content and all output files
combined_content = "\n\n---\n\n".join(individual_reports)
if len(individual_reports) > 1 and comparative_report:
combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"
return combined_content, output_files, "β
Analysis completed successfully!"
# FIXED: Improved wrapper function for Gradio interface with progress bar integration
def process_dashboard(api_key, files, language_name, goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None, progress=gr.Progress()):
"""Process dashboard files (PDF/images) and generate reports (wrapper function for Gradio interface)."""
# Get reference to the progress bar component
progress_bar = None
try:
# We'll pass this via the global progress_tracker
progress_bar = progress_tracker.progress_bar
except:
pass
# Start progress tracking with Gradio progress integration
progress_tracker.start_processing(progress, progress_bar)
# Start a thread to update text-based progress
progress_thread = threading.Thread(target=update_progress)
progress_thread.daemon = True
progress_thread.start()
# Convert language name to language code
language_code = "en" # Default to English
for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
if lang_data['name'].lower() == language_name.lower():
language_code = lang_data['code']
break
# Validate inputs
if not api_key or not api_key.strip():
error_message = "API key is required."
progress_tracker.update(100, f"β {error_message}")
progress_tracker.end_processing()
error_html = """
<div style="background-color: #ffebee; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #f44336;">
<div style="background: linear-gradient(90deg, #f44336 0%, #d32f2f 100%); width: 100%; height: 25px; border-radius: 8px;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #d32f2f;">
β Error: API key is required
</div>
</div>
"""
return None, None, error_message, error_html
if not files or len(files) == 0:
error_message = "No files uploaded."
progress_tracker.update(100, f"β {error_message}")
progress_tracker.end_processing()
error_html = """
<div style="background-color: #ffebee; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #f44336;">
<div style="background: linear-gradient(90deg, #f44336 0%, #d32f2f 100%); width: 100%; height: 25px; border-radius: 8px;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #d32f2f;">
β Error: No files uploaded
</div>
</div>
"""
return None, None, error_message, error_html
# Process the uploaded files with improved handling
processed_files = []
if files is not None:
for i, file in enumerate(files):
try:
# Handle different Gradio file formats more robustly
file_path = None
if isinstance(file, dict):
# Handle new Gradio File component format
if 'name' in file:
file_path = file['name']
elif 'path' in file:
file_path = file['path']
elif isinstance(file, str):
# Handle string file paths
file_path = file
else:
# Try to get the path from the file object
for attr in ['name', 'path', 'file_path']:
if hasattr(file, attr):
file_path = getattr(file, attr)
break
if not file_path:
print(f"β οΈ Could not determine file path for uploaded file {i+1}")
continue
if not os.path.exists(file_path):
print(f"β οΈ File does not exist: {file_path}")
continue
# Determine file type
file_type = get_file_type(file_path)
if file_type == 'unknown':
print(f"β οΈ Unsupported file type for {file_path}")
continue
# Read file data
try:
with open(file_path, 'rb') as f:
file_data = f.read()
if len(file_data) == 0:
print(f"β οΈ Empty file: {file_path}")
continue
processed_files.append((file_data, file_type))
print(f"β
Processed {file_path} as {file_type} ({len(file_data)} bytes)")
except Exception as e:
print(f"β Error reading file {file_path}: {str(e)}")
continue
except Exception as e:
print(f"β Error processing uploaded file {i+1}: {str(e)}")
continue
if not processed_files:
error_message = "No valid files were uploaded or processed."
progress_tracker.update(100, f"β {error_message}")
progress_tracker.end_processing()
error_html = """
<div style="background-color: #ffebee; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #f44336;">
<div style="background: linear-gradient(90deg, #f44336 0%, #d32f2f 100%); width: 100%; height: 25px; border-radius: 8px;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #d32f2f;">
β Error: No valid files processed
</div>
</div>
"""
return None, None, error_message, error_html
print(f"Successfully processed {len(processed_files)} files for analysis")
# Call the actual processing function
try:
combined_content, output_files, status = process_multiple_dashboards(
api_key=api_key,
files=processed_files,
language_code=language_code,
goal_description=goal_description,
num_sections=num_sections,
model_name=model_name,
custom_model=custom_model
)
# Validate output files exist and are accessible
if output_files:
valid_files = []
for file_path in output_files:
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
valid_files.append(file_path)
else:
print(f"β οΈ Output file not found or empty: {file_path}")
if valid_files:
print(f"β
Returning {len(valid_files)} valid output files")
success_html = """
<div style="background-color: #f0f0f0; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ddd;">
<div style="background: linear-gradient(90deg, #4CAF50 0%, #45a049 100%); width: 100%; height: 25px; border-radius: 8px; transition: width 0.3s ease;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #333;">
β
Analysis Complete - 100.0%
</div>
</div>
"""
return combined_content, valid_files, status, success_html
else:
success_html = """
<div style="background-color: #fff3cd; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ffc107;">
<div style="background: linear-gradient(90deg, #ffc107 0%, #ffb300 100%); width: 100%; height: 25px; border-radius: 8px;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #856404;">
β οΈ Analysis completed but no files created
</div>
</div>
"""
return combined_content, None, "Analysis completed but no downloadable files were created.", success_html
success_html = """
<div style="background-color: #f0f0f0; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #ddd;">
<div style="background: linear-gradient(90deg, #4CAF50 0%, #45a049 100%); width: 100%; height: 25px; border-radius: 8px; transition: width 0.3s ease;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #333;">
β
Analysis Complete - 100.0%
</div>
</div>
"""
return combined_content, output_files, status, success_html
except Exception as e:
error_message = f"Error processing dashboards: {str(e)}"
print(f"β {error_message}")
progress_tracker.update(100, f"β {error_message}")
progress_tracker.end_processing()
error_html = """
<div style="background-color: #ffebee; border-radius: 10px; padding: 5px; margin: 10px 0; border: 1px solid #f44336;">
<div style="background: linear-gradient(90deg, #f44336 0%, #d32f2f 100%); width: 100%; height: 25px; border-radius: 8px;"></div>
<div style="text-align: center; margin-top: 5px; font-weight: bold; color: #d32f2f;">
β Error processing dashboards
</div>
</div>
"""
return None, None, error_message, error_html
# Gradio Interface Functions
def toggle_custom_model(choice):
"""Toggle visibility of custom model input based on selection."""
return {"visible": choice == "custom"}
def refresh_models(api_key):
"""Refresh the list of available models based on the API key."""
if not api_key:
return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
try:
available_models = get_available_models(api_key)
return gr.Dropdown(choices=available_models, value=DEFAULT_MODEL)
except Exception as e:
print(f"Error refreshing models: {str(e)}")
return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
# Define the Gradio interface with improved error handling and progress bar
with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Dashboard Narrator - Powered by OpenRouter.ai
Unlock the hidden stories in your dashboards!<br>
Dashboard Narrator leverages advanced AI models through OpenRouter.ai to dissect your PDF reports and images,<br>
analyze each segment with expert precision, and craft comprehensive insights in your preferred language.<br><br>
Turn complex data visualizations into clear, strategic recommendations and uncover trends you might have missed.<br>
From executive summaries to detailed breakdowns, get the full narrative behind your numbers in just a few clicks.<br><br>
**β¨ New Features:**
- Support for PNG and JPG image analysis
- Enhanced with Claude Sonnet 4 and Gemini 2.5 Flash models
- Multi-format dashboard analysis capabilities
- Improved file download functionality
- **Real-time progress tracking with visual progress bar**<br><br>
**Instructions:**
1. Enter your OpenRouter API key (get one at OpenRouter.ai)
2. Choose an AI model for analysis
3. Select your preferred report language
4. Upload one or more dashboard files (PDF, PNG, JPG)
5. Optionally specify analysis goals
6. Click "Analyze Dashboards" to begin
""")
# Add a visible progress bar component
with gr.Row():
with gr.Column():
progress_bar = gr.HTML(
value="",
visible=False,
label="Analysis Progress"
)
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(
label="OpenRouter API Key (Required)",
placeholder="Enter your OpenRouter API key...",
type="password"
)
refresh_btn = gr.Button("π Refresh Available Models", size="sm")
model_choice = gr.Dropdown(
choices=["custom"] + OPENROUTER_MODELS,
value=DEFAULT_MODEL,
label="Select AI Model"
)
custom_model = gr.Textbox(
label="Custom Model ID",
placeholder="Enter custom model ID (e.g., anthropic/claude-3-opus:latest)...",
visible=False
)
language = gr.Dropdown(
choices=["Italiano", "English", "FranΓ§ais", "EspaΓ±ol", "Deutsch"],
value="English",
label="Report Language"
)
num_sections = gr.Slider(
minimum=2,
maximum=10,
value=4,
step=1,
label="Vertical Sections per Dashboard"
)
goal = gr.Textbox(
label="Analysis Goal (Optional)",
placeholder="E.g., Analyze Q1 2024 sales KPIs..."
)
files = gr.File(
label="Upload Dashboards (PDF, PNG, JPG)",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
file_count="multiple"
)
analyze_btn = gr.Button("π Analyze Dashboards", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Tab("Report"):
output_md = gr.Markdown(label="Analysis Report", value="Upload dashboards and click Analyze to get started...")
with gr.Tab("Download Files"):
output_files = gr.File(
label="Download Generated Reports",
file_count="multiple"
)
output_status = gr.Textbox(
label="Status & Progress",
placeholder="Upload dashboards and press Analyze to begin...",
interactive=False
)
# Store progress bar reference in global tracker
progress_tracker.progress_bar = progress_bar
# Handle model dropdown change
model_choice.change(
fn=toggle_custom_model,
inputs=model_choice,
outputs=custom_model,
)
# Handle refresh models button
refresh_btn.click(
fn=refresh_models,
inputs=api_key,
outputs=model_choice,
)
# Handle analyze button with improved error handling and progress bar
analyze_btn.click(
fn=process_dashboard,
inputs=[api_key, files, language, goal, num_sections, model_choice, custom_model],
outputs=[output_md, output_files, output_status, progress_bar],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True, show_error=True) |