Spaces:
Sleeping
Sleeping
import math | |
import warnings | |
from functools import partial | |
import torch | |
from torch import nn | |
from .transformer import Block | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def get_num_patches(height=64, width=1001, patch_height=16, patch_width=16): | |
return (height // patch_height) * (width // patch_width) | |
from einops.layers.torch import Rearrange | |
class PatchEmbed_v2(nn.Module): | |
def __init__(self, patch_height=64, patch_width=4, embed_dim=768, input_dim=1): | |
super().__init__() | |
self.patch_height = patch_height | |
self.patch_width = patch_width | |
self.patch_maker = Rearrange('b c (h p1) (w p2) -> b (w h) (p1 p2 c)', p1=patch_height, p2=patch_width) | |
self.patch_embed = nn.Linear(patch_height * patch_width * input_dim, embed_dim) | |
def forward(self, melspec, length=None): | |
height = melspec.shape[2] - melspec.shape[2] % self.patch_height | |
width = melspec.shape[3] - melspec.shape[3] % self.patch_width | |
patch = self.patch_maker(melspec[:, :, :height, :width]) | |
patch_embed = self.patch_embed(patch) | |
if length is not None: | |
patch_length = (torch.div(height, self.patch_height, rounding_mode='trunc')) * torch.div( | |
(length - length % self.patch_width), self.patch_width, rounding_mode='trunc') | |
else: | |
patch_length = None | |
return patch, patch_embed, patch_length | |
class FrameAST(nn.Module): | |
""" Vision Transformer """ | |
def __init__(self, nprompt=0, spec_h=64, spec_w=1001, patch_w=16, patch_h=16, pos_type="cut", in_chans=1, | |
num_classes=0, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0., | |
drop_path_rate=0.0, norm_layer=nn.LayerNorm, **kwargs): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim | |
self.spec_w = spec_w | |
self.spec_h = spec_h | |
self.embed_dim = embed_dim | |
self.patch_w = patch_w | |
self.patch_h = patch_h | |
self.pos_type = pos_type | |
self.patch_embed = PatchEmbed_v2(patch_h, patch_w, embed_dim) | |
self.mask_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
# hack | |
self.nprompt = nprompt | |
if self.nprompt > 0: | |
self.prompt_embed = nn.Parameter(torch.zeros(1, self.nprompt, self.embed_dim)) | |
trunc_normal_(self.prompt_embed, std=.02) | |
num_patches = get_num_patches(spec_h, spec_w, patch_h, patch_w) | |
self.num_patches = num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm_frame = norm_layer(embed_dim) | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.mask_embed, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def prepare_tokens(self, x, mask_index, length, mask=True): | |
B, nc, h, w = x.shape | |
mel_patches, x, patch_length = self.patch_embed(x, length) # patch linear embedding | |
B, T, C = x.shape | |
if (mask_index is not None) and mask: | |
mask_index_expand = mask_index.unsqueeze(2).expand(B, T, self.embed_dim).float() | |
x = (1 - mask_index_expand) * x + mask_index_expand * self.mask_embed.expand(B, T, C) | |
# add positional encoding to each token | |
if self.pos_type == "cut": | |
pos = self.pos_embed[:, 1:T + 1, :].expand(B, -1, -1) | |
x = x + pos | |
else: | |
pos = self.interpolate_pos_encoding(x, h, w) | |
x = x + pos[:, 1:] | |
# pos = self.pos_embed[:,1:T+1,:].expand(B,-1,-1) | |
# x = x + pos | |
return self.pos_drop(x), pos, mel_patches, h, w, patch_length | |
def forward(self, x, mask_index=None, mask_input=True, length=None): | |
x, pos, mel_patches, h, w, patch_length = self.prepare_tokens(x, mask_index, length, mask_input) | |
length_mask = torch.arange(mel_patches.shape[1]).to(x.device) < patch_length.unsqueeze(1) | |
length_mask = length_mask.to(x.device) | |
mask_index = mask_index & length_mask | |
if self.nprompt > 0: | |
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x, patch_length + self.nprompt) | |
frame_repr = self.norm_frame(x) | |
return frame_repr[:, self.nprompt:][mask_index] | |
def interpolate_pos_encoding(self, x, h, w): | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == self.spec_w and h == self.spec_h: | |
return self.pos_embed | |
class_pos_embed = self.pos_embed[:, 0] | |
patch_pos_embed = self.pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_embed.patch_width | |
h0 = h // self.patch_embed.patch_height | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, self.spec_h // self.patch_h, self.spec_w // self.patch_w, dim).permute(0, 3, 1, | |
2), | |
scale_factor=(h0 / (self.spec_h // self.patch_h), w0 / (self.spec_w // self.patch_w)), | |
mode='bicubic', | |
) | |
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def get_last_selfattention(self, x): | |
x, _, _, _, _, _ = self.prepare_tokens(x, mask_index=None, length=None, mask=False) | |
atts = [] | |
for i, blk in enumerate(self.blocks): | |
if i < len(self.blocks) - 1: | |
x, att = blk(x, return_attention=True) | |
atts.append(att) | |
else: | |
x, att = blk(x, return_attention=True) | |
atts.append(att) | |
return atts | |
# return attention of the last block | |
def get_intermediate_layers(self, x, length, n=1, scene=True, other_emb=None): | |
x, _, _, _, _, patch_length = self.prepare_tokens(x, mask_index=None, length=length, mask=False) | |
# we return the output tokens from the `n` last blocks | |
if other_emb is not None: | |
x = torch.cat([other_emb, x], dim=1) | |
output = [] | |
if self.nprompt > 0: | |
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x, patch_length + self.nprompt) | |
if len(self.blocks) - i <= n: | |
norm_x = self.norm_frame(x) | |
if scene: | |
length_mask = torch.arange(x.shape[1] - self.nprompt).to(x.device) < patch_length.unsqueeze(1) | |
avg = torch.sum(norm_x[:, self.nprompt:] * length_mask.unsqueeze(-1), dim=1) / ( | |
patch_length.unsqueeze(-1) + 1e-6) | |
negative = (~length_mask) * -1e10 | |
# max = torch.max(norm_x[:,self.nprompt:]+negative.unsqueeze(-1),1).values | |
output.append(avg) | |
if self.nprompt > 0: | |
output.append(torch.mean(norm_x[:, :self.nprompt], dim=1)) | |
else: | |
output.append(norm_x[:, self.nprompt:]) | |
return torch.cat(output, dim=-1) | |
def get_cls_avg(output_i, cur_len, use_cls): | |
length_mask = torch.arange(output_i[0].shape[1]).to(output_i[0].device) < cur_len.unsqueeze(1) | |
cls = [torch.zeros_like(x[:, 0]) for x in output_i] | |
avg = [torch.sum(x * length_mask.unsqueeze(-1), dim=1) / (cur_len.unsqueeze(1) + 1e-6) for x in output_i] | |
return cls, avg | |
def FrameASTModel(patch_h=64, patch_w=4, atst_dropout=0.1, **kwargs): | |
return FrameAST( | |
patch_h=patch_h, | |
patch_w=patch_w, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
qkv_bias=False, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
drop_path_rate=atst_dropout, | |
drop_rate=atst_dropout, | |
**kwargs) | |