sohamc10's picture
gradio app
9b0d6c2
import math
import warnings
from functools import partial
import torch
from torch import nn
from .transformer import Block
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def get_num_patches(height=64, width=1001, patch_height=16, patch_width=16):
return (height // patch_height) * (width // patch_width)
from einops.layers.torch import Rearrange
class PatchEmbed_v2(nn.Module):
def __init__(self, patch_height=64, patch_width=4, embed_dim=768, input_dim=1):
super().__init__()
self.patch_height = patch_height
self.patch_width = patch_width
self.patch_maker = Rearrange('b c (h p1) (w p2) -> b (w h) (p1 p2 c)', p1=patch_height, p2=patch_width)
self.patch_embed = nn.Linear(patch_height * patch_width * input_dim, embed_dim)
def forward(self, melspec, length=None):
height = melspec.shape[2] - melspec.shape[2] % self.patch_height
width = melspec.shape[3] - melspec.shape[3] % self.patch_width
patch = self.patch_maker(melspec[:, :, :height, :width])
patch_embed = self.patch_embed(patch)
if length is not None:
patch_length = (torch.div(height, self.patch_height, rounding_mode='trunc')) * torch.div(
(length - length % self.patch_width), self.patch_width, rounding_mode='trunc')
else:
patch_length = None
return patch, patch_embed, patch_length
class FrameAST(nn.Module):
""" Vision Transformer """
def __init__(self, nprompt=0, spec_h=64, spec_w=1001, patch_w=16, patch_h=16, pos_type="cut", in_chans=1,
num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.,
drop_path_rate=0.0, norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.spec_w = spec_w
self.spec_h = spec_h
self.embed_dim = embed_dim
self.patch_w = patch_w
self.patch_h = patch_h
self.pos_type = pos_type
self.patch_embed = PatchEmbed_v2(patch_h, patch_w, embed_dim)
self.mask_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
# hack
self.nprompt = nprompt
if self.nprompt > 0:
self.prompt_embed = nn.Parameter(torch.zeros(1, self.nprompt, self.embed_dim))
trunc_normal_(self.prompt_embed, std=.02)
num_patches = get_num_patches(spec_h, spec_w, patch_h, patch_w)
self.num_patches = num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm_frame = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.mask_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def prepare_tokens(self, x, mask_index, length, mask=True):
B, nc, h, w = x.shape
mel_patches, x, patch_length = self.patch_embed(x, length) # patch linear embedding
B, T, C = x.shape
if (mask_index is not None) and mask:
mask_index_expand = mask_index.unsqueeze(2).expand(B, T, self.embed_dim).float()
x = (1 - mask_index_expand) * x + mask_index_expand * self.mask_embed.expand(B, T, C)
# add positional encoding to each token
if self.pos_type == "cut":
pos = self.pos_embed[:, 1:T + 1, :].expand(B, -1, -1)
x = x + pos
else:
pos = self.interpolate_pos_encoding(x, h, w)
x = x + pos[:, 1:]
# pos = self.pos_embed[:,1:T+1,:].expand(B,-1,-1)
# x = x + pos
return self.pos_drop(x), pos, mel_patches, h, w, patch_length
def forward(self, x, mask_index=None, mask_input=True, length=None):
x, pos, mel_patches, h, w, patch_length = self.prepare_tokens(x, mask_index, length, mask_input)
length_mask = torch.arange(mel_patches.shape[1]).to(x.device) < patch_length.unsqueeze(1)
length_mask = length_mask.to(x.device)
mask_index = mask_index & length_mask
if self.nprompt > 0:
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x, patch_length + self.nprompt)
frame_repr = self.norm_frame(x)
return frame_repr[:, self.nprompt:][mask_index]
def interpolate_pos_encoding(self, x, h, w):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == self.spec_w and h == self.spec_h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_width
h0 = h // self.patch_embed.patch_height
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, self.spec_h // self.patch_h, self.spec_w // self.patch_w, dim).permute(0, 3, 1,
2),
scale_factor=(h0 / (self.spec_h // self.patch_h), w0 / (self.spec_w // self.patch_w)),
mode='bicubic',
)
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def get_last_selfattention(self, x):
x, _, _, _, _, _ = self.prepare_tokens(x, mask_index=None, length=None, mask=False)
atts = []
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x, att = blk(x, return_attention=True)
atts.append(att)
else:
x, att = blk(x, return_attention=True)
atts.append(att)
return atts
# return attention of the last block
def get_intermediate_layers(self, x, length, n=1, scene=True, other_emb=None):
x, _, _, _, _, patch_length = self.prepare_tokens(x, mask_index=None, length=length, mask=False)
# we return the output tokens from the `n` last blocks
if other_emb is not None:
x = torch.cat([other_emb, x], dim=1)
output = []
if self.nprompt > 0:
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x, patch_length + self.nprompt)
if len(self.blocks) - i <= n:
norm_x = self.norm_frame(x)
if scene:
length_mask = torch.arange(x.shape[1] - self.nprompt).to(x.device) < patch_length.unsqueeze(1)
avg = torch.sum(norm_x[:, self.nprompt:] * length_mask.unsqueeze(-1), dim=1) / (
patch_length.unsqueeze(-1) + 1e-6)
negative = (~length_mask) * -1e10
# max = torch.max(norm_x[:,self.nprompt:]+negative.unsqueeze(-1),1).values
output.append(avg)
if self.nprompt > 0:
output.append(torch.mean(norm_x[:, :self.nprompt], dim=1))
else:
output.append(norm_x[:, self.nprompt:])
return torch.cat(output, dim=-1)
def get_cls_avg(output_i, cur_len, use_cls):
length_mask = torch.arange(output_i[0].shape[1]).to(output_i[0].device) < cur_len.unsqueeze(1)
cls = [torch.zeros_like(x[:, 0]) for x in output_i]
avg = [torch.sum(x * length_mask.unsqueeze(-1), dim=1) / (cur_len.unsqueeze(1) + 1e-6) for x in output_i]
return cls, avg
def FrameASTModel(patch_h=64, patch_w=4, atst_dropout=0.1, **kwargs):
return FrameAST(
patch_h=patch_h,
patch_w=patch_w,
embed_dim=768,
depth=12,
num_heads=12,
qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_path_rate=atst_dropout,
drop_rate=atst_dropout,
**kwargs)