Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,236 Bytes
15067e5 53b8f1f 15067e5 ca125f5 1e770e5 ca125f5 af1ccb2 ca125f5 15067e5 ca125f5 15067e5 ca125f5 ebb0646 15067e5 ca125f5 cd8c42c ca125f5 ebb0646 ca125f5 cd8c42c ca125f5 cd8c42c ca125f5 cd8c42c ca125f5 cd8c42c ca125f5 3655123 ca125f5 281f3ad ca125f5 ebb0646 ca125f5 ebb0646 15067e5 281f3ad ca125f5 15067e5 ca125f5 15067e5 ca125f5 15067e5 ca125f5 15067e5 ca125f5 6d3678b 15067e5 6d3678b ca125f5 15067e5 ca125f5 15067e5 ca125f5 15067e5 ca125f5 15067e5 ca125f5 ebb0646 ca125f5 ebb0646 53b8f1f ca125f5 dbe872f ca125f5 53b8f1f ca125f5 15067e5 ca125f5 cd8c42c 82895ea 08d9c00 6d3678b ca125f5 15067e5 ca125f5 3ad87bd ca125f5 82895ea ca125f5 15067e5 281f3ad ca125f5 15067e5 281f3ad 15067e5 281f3ad 15067e5 281f3ad 15067e5 ca125f5 1e770e5 15067e5 ca125f5 15067e5 ca125f5 15067e5 ca125f5 15067e5 281f3ad 08d9c00 15067e5 53b8f1f 15067e5 6d3678b 15067e5 a5216ce 94f2e74 15067e5 6d3678b 20a5a76 15067e5 a5216ce 08d9c00 6d3678b 53b8f1f 281f3ad 94f2e74 15067e5 6d3678b 15067e5 6d3678b 15067e5 08d9c00 6d3678b 281f3ad 6d3678b a5216ce 15067e5 281f3ad 15067e5 08d9c00 15067e5 e45b54b 281f3ad ca125f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import io
import base64
import gc
from huggingface_hub.utils import HfHubHTTPError
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
import io, base64
from PIL import Image
import torch
import gradio as gr
import spaces
import numpy as np
import pandas as pd
import pymupdf
from PIL import Image
from pypdf import PdfReader
from dotenv import load_dotenv
import shutil
from chromadb.config import Settings, DEFAULT_TENANT, DEFAULT_DATABASE
from welcome_text import WELCOME_INTRO
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import chromadb
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
from langchain_core.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint
from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
from utils import *
# ─────────────────────────────────────────────────────────────────────────────
# Load .env
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
processor = None
vision_model = None
# OCR + multimodal image description setup
ocr_model = ocr_predictor(
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
)
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cuda")
# Add at the top of your module, alongside your other globals
PERSIST_DIR = "./chroma_db"
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR)
@spaces.GPU()
def get_image_description(image: Image.Image) -> str:
"""
Lazy-loads the Llava processor + model inside the GPU worker,
runs captioning, and returns a one-sentence description.
"""
global processor, vision_model
# On first call, instantiate + move to CUDA
if processor is None or vision_model is None:
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cuda")
torch.cuda.empty_cache()
gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
output = vision_model.generate(**inputs, max_new_tokens=100)
return processor.decode(output[0], skip_special_tokens=True)
# Vector DB setup
# at top of file, alongside your other imports
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import image_to_bytes # your helper
# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
"""
Build a *persistent* ChromaDB instance on disk, with two collections:
• text_db (chunks of the PDF text)
• image_db (image descriptions + raw image bytes)
"""
# 1) Make or clean the on-disk folder
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
client = chromadb.PersistentClient(
path=PERSIST_DIR,
settings=Settings(),
tenant=DEFAULT_TENANT,
database=DEFAULT_DATABASE
)
# 3) Create / wipe collections
for col in ("text_db", "image_db"):
if col in [c.name for c in client.list_collections()]:
client.delete_collection(col)
text_col = client.get_or_create_collection(
name="text_db",
embedding_function=SHARED_EMB_FN
)
img_col = client.get_or_create_collection(
name="image_db",
embedding_function=SHARED_EMB_FN,
metadata={"hnsw:space": "cosine"}
)
# 4) Add images
if images:
descs, metas = [], []
for idx, img in enumerate(images):
try:
cap = get_image_description(img)
except:
cap = "⚠️ could not describe image"
descs.append(f"{img_names[idx]}: {cap}")
metas.append({"image": image_to_bytes(img)})
img_col.add(ids=[str(i) for i in range(len(images))],
documents=descs,
metadatas=metas)
# 5) Chunk & add text
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.create_documents([text])
text_col.add(ids=[str(i) for i in range(len(docs))],
documents=[d.page_content for d in docs])
return client
# Text extraction
def result_to_text(result, as_text=False):
pages = []
for pg in result.pages:
txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
pages.append(clean_text(txt))
return "\n\n".join(pages) if as_text else pages
OCR_CHOICES = {
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
}
@spaces.GPU()
def extract_data_from_pdfs(
docs: list[str],
session: dict,
include_images: str,
do_ocr: str,
ocr_choice: str,
vlm_choice: str,
progress=gr.Progress()
):
if not docs:
raise gr.Error("No documents to process")
# 1) OCR pipeline if requested
if do_ocr == "Get Text With OCR":
db_m, crnn_m = OCR_CHOICES[ocr_choice]
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
else:
local_ocr = None
# 2) Vision–language model
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
vis = (LlavaNextForConditionalGeneration
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
.to("cuda"))
# 3) Monkey-patch caption fn
def describe(img):
torch.cuda.empty_cache(); gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inp = proc(prompt, img, return_tensors="pt").to("cuda")
out = vis.generate(**inp, max_new_tokens=100)
return proc.decode(out[0], skip_special_tokens=True)
global get_image_description
get_image_description = describe
# 4) Extract text & images
progress(0.2, "Extracting text and images…")
all_text = ""
images, names = [], []
for path in docs:
if local_ocr:
pdf = DocumentFile.from_pdf(path)
res = local_ocr(pdf)
all_text += result_to_text(res, as_text=True) + "\n\n"
else:
all_text += (PdfReader(path).pages[0].extract_text() or "") + "\n\n"
if include_images == "Include Images":
imgs = extract_images([path])
images.extend(imgs)
names.extend([os.path.basename(path)] * len(imgs))
# 5) Build + persist the vectordb
progress(0.6, "Indexing in vector DB…")
client = get_vectordb(all_text, images, names)
# 6) Mark session and return UI outputs
session["processed"] = True
session["persist_directory"] = PERSIST_DIR
sample_imgs = images[:4] if include_images == "Include Images" else []
return (
session, # gr.State
all_text[:2000] + "...",
sample_imgs,
"<h3>Done!</h3>"
)
# Chat function
def conversation(
session: dict,
question: str,
num_ctx: int,
img_ctx: int,
history: list,
temp: float,
max_tok: int,
model_id: str
):
pd = session.get("persist_directory")
if not session.get("processed") or not pd:
raise gr.Error("Please extract data first")
# 1) Reopen the same persistent client (new API)
client = chromadb.PersistentClient(
path=pd,
settings=Settings(),
tenant=DEFAULT_TENANT,
database=DEFAULT_DATABASE
)
# 2) Text retrieval
text_col = client.get_collection("text_db")
docs = text_col.query(query_texts=[question],
n_results=int(num_ctx),
include=["documents"])["documents"][0]
# 3) Image retrieval
img_col = client.get_collection("image_db")
img_q = img_col.query(query_texts=[question],
n_results=int(img_ctx),
include=["metadatas","documents"])
img_descs = img_q["documents"][0] or ["No images found"]
images = []
for meta in img_q["metadatas"][0]:
b64 = meta.get("image","")
try:
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
except:
pass
img_desc = "\n".join(img_descs)
# 4) Build prompt & call LLM
llm = HuggingFaceEndpoint(
repo_id=model_id,
task="text-generation",
temperature=temp,
max_new_tokens=max_tok,
huggingfacehub_api_token=HF_TOKEN
)
prompt = PromptTemplate(
template="""
Context:
{text}
Included Images:
{img_desc}
Question:
{q}
Answer:
""", input_variables=["text","img_desc","q"]
)
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
try:
answer = llm.invoke(inp)
except HfHubHTTPError as e:
answer = "❌ Model not hosted" if e.response.status_code==404 else f"⚠️ HF error: {e}"
except Exception as e:
answer = f"⚠️ Unexpected error: {e}"
new_history = history + [
{"role":"user", "content":question},
{"role":"assistant","content":answer}
]
return new_history, docs, images
# ─────────────────────────────────────────────────────────────────────────────
# Gradio UI
CSS = """
footer {visibility:hidden;}
"""
MODEL_OPTIONS = [
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2",
"openchat/openchat-3.5-0106",
"google/gemma-7b-it",
"deepseek-ai/deepseek-llm-7b-chat",
"microsoft/Phi-3-mini-4k-instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Qwen/Qwen1.5-7B-Chat",
"tiiuae/falcon-7b-instruct", # Falcon 7B Instruct
"bigscience/bloomz-7b1", # BLOOMZ 7B
"facebook/opt-2.7b",
]
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
session_state = gr.State({})
with gr.Column(visible=True) as welcome_col:
gr.Markdown(f"<div style='text-align:center'>{WELCOME_INTRO}</div>")
start_btn = gr.Button("🚀 Start")
with gr.Column(visible=False) as app_col:
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
extract_event = None
with gr.Tabs() as tabs:
with gr.TabItem("1. Upload & Extract"):
docs = gr.File(file_count="multiple", file_types=[".pdf"], label="Upload PDFs")
include_dd = gr.Radio(["Include Images","Exclude Images"],"Exclude Images","Images")
ocr_radio = gr.Radio(["Get Text With OCR","Get Available Text Only"],"Get Available Text Only","OCR")
ocr_dd = gr.Dropdown(list(OCR_CHOICES.keys()), list(OCR_CHOICES.keys())[0], "OCR Model")
vlm_dd = gr.Dropdown(["llava-hf/llava-v1.6-mistral-7b-hf","llava-hf/llava-v1.5-mistral-7b"], "llava-hf/llava-v1.6-mistral-7b-hf", "Vision-Language Model")
extract_btn = gr.Button("Extract")
preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
preview_img = gr.Gallery(label="Sample Images", rows=2, value=[])
preview_html = gr.HTML()
extract_event = extract_btn.click(
fn=extract_data_from_pdfs,
inputs=[docs, session_state, include_dd, ocr_radio, ocr_dd, vlm_dd],
outputs=[session_state, preview_text, preview_img, preview_html]
)
with gr.TabItem("2. Chat", visible=False) as chat_tab:
with gr.Row():
with gr.Column(scale=3):
chat = gr.Chatbot(type="messages", label="Chat")
msg = gr.Textbox(placeholder="Ask about your PDF...", label="Your question")
send = gr.Button("Send")
with gr.Column(scale=1):
model_dd = gr.Dropdown(MODEL_OPTIONS, MODEL_OPTIONS[0], "Choose Chat Model")
num_ctx = gr.Slider(1,20, value=3, label="Text Contexts")
img_ctx = gr.Slider(1,10, value=2, label="Image Contexts")
temp = gr.Slider(0.1,1.0, step=0.1, value=0.4, label="Temperature")
max_tok = gr.Slider(10,1000, step=10, value=200, label="Max Tokens")
send.click(
fn=conversation,
inputs=[session_state, msg, num_ctx, img_ctx, chat, temp, max_tok, model_dd],
outputs=[chat, gr.Dataframe(), gr.Gallery(label="Relevant Images", rows=2, value=[])]
)
# Unhide the Chat tab once extraction completes
extract_event.then(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[chat_tab]
)
gr.HTML("<center>Made with ❤️ by Zamal</center>")
start_btn.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
outputs=[welcome_col, app_col]
)
if __name__ == "__main__":
demo.launch() |