zhzhen23's picture
Update README.md
d1f15f8 verified
---
title: OmniSearchLeaderboard
emoji: 🐨
colorFrom: pink
colorTo: green
sdk: streamlit
sdk_version: 1.44.1
app_file: app.py
pinned: false
license: apache-2.0
---
# πŸ“š Dyn-VQA Dataset
πŸ“‘ Dataset for [*Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent*](https://arxiv.org/abs/2411.02937)
🌟 This dataset is linked to GitHub at [this URL](<https://github.com/Alibaba-NLP/OmniSearch>).
The json item of Dyn-VQA dataset is organized in the following format:
```json
{
"image_url": "https://www.pcarmarket.com/static/media/uploads/galleries/photos/uploads/galleries/22387-pasewark-1986-porsche-944/.thumbnails/IMG_7102.JPG.jpg/IMG_7102.JPG-tiny-2048x0-0.5x0.jpg",
"question": "What is the model of car from this brand?",
"question_id": 'qid',
"answer": ["保既捷 944", "Porsche 944."]
}
```
πŸ”₯ The Dyn-VQA **will be updated regularly.** Laset version: 202502.
## πŸ“ Citation
```bigquery
@article{li2024benchmarkingmultimodalretrievalaugmented,
title={Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent},
author={Yangning Li and Yinghui Li and Xinyu Wang and Yong Jiang and Zhen Zhang and Xinran Zheng and Hui Wang and Hai-Tao Zheng and Pengjun Xie and Philip S. Yu and Fei Huang and Jingren Zhou},
year={2024},
eprint={2411.02937},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.02937},
}
```
When citing our work, please kindly consider citing the original papers. The relevant citation information is listed here.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference