|
# ESM2 Protein Model |
|
|
|
This is the protein component of a jointly trained NT-ESM2 model pair for DNA-protein analysis. |
|
|
|
## Model Details |
|
|
|
- **Model Type**: ESM2 for protein sequences |
|
- **Training**: Jointly trained with NT DNA model |
|
- **Architecture**: Transformer-based language model for proteins |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
# Load model and tokenizer |
|
model = AutoModel.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-protein") |
|
tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-protein") |
|
|
|
# Example usage |
|
protein_sequence = "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG" |
|
inputs = tokenizer(protein_sequence, return_tensors="pt") |
|
outputs = model(**inputs) |
|
``` |
|
|
|
## Training Details |
|
|
|
- Jointly trained with DNA sequences for cross-modal understanding |
|
- Large model variant |
|
- Transcript-specific protein coding sequences |
|
|
|
## Files |
|
|
|
- `config.json`: Model configuration |
|
- `model.safetensors`: Model weights |
|
- `tokenizer_config.json`: Tokenizer configuration |
|
- `vocab.txt`: Vocabulary file |
|
- `special_tokens_map.json`: Special tokens mapping |
|
|
|
## Citation |
|
|
|
If you use this model, please cite the original ESM2 paper and your joint training work. |
|
|