|
|
--- |
|
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
|
datasets: |
|
|
- youssefkhalil320/pairs_three_scores_v5 |
|
|
language: |
|
|
- en |
|
|
library_name: sentence-transformers |
|
|
license: apache-2.0 |
|
|
pipeline_tag: sentence-similarity |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:80000003 |
|
|
- loss:CoSENTLoss |
|
|
widget: |
|
|
- source_sentence: durable pvc swim ring |
|
|
sentences: |
|
|
- flaky croissant |
|
|
- urban shoes |
|
|
- warm drinks mug |
|
|
- source_sentence: iso mak retard capsules |
|
|
sentences: |
|
|
- savory baguette |
|
|
- shea butter body cream |
|
|
- softwheeled cruiser |
|
|
- source_sentence: love sandra potty |
|
|
sentences: |
|
|
- utensil holder |
|
|
- olive pants |
|
|
- headwear |
|
|
- source_sentence: dusky hair brush |
|
|
sentences: |
|
|
- back compartment laptop |
|
|
- rubber feet platter |
|
|
- honed blade knife |
|
|
- source_sentence: nkd skn |
|
|
sentences: |
|
|
- fruit fragrances nail polish remover |
|
|
- panini salmon |
|
|
- hand drawing bag |
|
|
--- |
|
|
|
|
|
# all-MiniLM-L6-v8-pair_score |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> |
|
|
- **Maximum Sequence Length:** 256 tokens |
|
|
- **Output Dimensionality:** 384 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) |
|
|
- **Language:** en |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'nkd skn', |
|
|
'hand drawing bag', |
|
|
'panini salmon', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### pairs_three_scores_v5 |
|
|
|
|
|
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1) |
|
|
* Size: 80,000,003 training samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 6.06 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.71 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.11</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:-------------------------------------|:---------------------------------------|:-----------------| |
|
|
| <code>vanilla hair cream</code> | <code>free of paraben hair mask</code> | <code>0.5</code> | |
|
|
| <code>nourishing shampoo</code> | <code>cumin lemon tea</code> | <code>0.0</code> | |
|
|
| <code>safe materials pacifier</code> | <code>facial serum</code> | <code>0.5</code> | |
|
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "pairwise_cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### pairs_three_scores_v5 |
|
|
|
|
|
* Dataset: [pairs_three_scores_v5](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5) at [3d8c457](https://huggingface.co/datasets/youssefkhalil320/pairs_three_scores_v5/tree/3d8c45703846bd2adfaaf422abafbc389b283de1) |
|
|
* Size: 20,000,001 evaluation samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 6.21 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.75 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.11</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:----------------------------------------|:-----------------------------------|:-----------------| |
|
|
| <code>teddy bear toy</code> | <code>long lasting cat food</code> | <code>0.0</code> | |
|
|
| <code>eva hair treatment</code> | <code>fresh pineapple</code> | <code>0.0</code> | |
|
|
| <code>soft wave hair conditioner</code> | <code>hybrid seat bike</code> | <code>0.0</code> | |
|
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "pairwise_cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 128 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 1 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `fp16`: True |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 128 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 1 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
| Epoch | Step | Training Loss | |
|
|
|:------:|:-----:|:-------------:| |
|
|
| 0.0002 | 100 | 10.8792 | |
|
|
| 0.0003 | 200 | 10.9284 | |
|
|
| 0.0005 | 300 | 10.6466 | |
|
|
| 0.0006 | 400 | 10.841 | |
|
|
| 0.0008 | 500 | 10.8094 | |
|
|
| 0.0010 | 600 | 10.4323 | |
|
|
| 0.0011 | 700 | 10.3032 | |
|
|
| 0.0013 | 800 | 10.4006 | |
|
|
| 0.0014 | 900 | 10.4743 | |
|
|
| 0.0016 | 1000 | 10.2334 | |
|
|
| 0.0018 | 1100 | 10.0135 | |
|
|
| 0.0019 | 1200 | 9.7874 | |
|
|
| 0.0021 | 1300 | 9.7419 | |
|
|
| 0.0022 | 1400 | 9.7412 | |
|
|
| 0.0024 | 1500 | 9.4585 | |
|
|
| 0.0026 | 1600 | 9.5339 | |
|
|
| 0.0027 | 1700 | 9.4345 | |
|
|
| 0.0029 | 1800 | 9.1733 | |
|
|
| 0.0030 | 1900 | 8.9952 | |
|
|
| 0.0032 | 2000 | 8.9669 | |
|
|
| 0.0034 | 2100 | 8.8152 | |
|
|
| 0.0035 | 2200 | 8.7936 | |
|
|
| 0.0037 | 2300 | 8.6771 | |
|
|
| 0.0038 | 2400 | 8.4648 | |
|
|
| 0.0040 | 2500 | 8.5764 | |
|
|
| 0.0042 | 2600 | 8.4587 | |
|
|
| 0.0043 | 2700 | 8.2966 | |
|
|
| 0.0045 | 2800 | 8.2329 | |
|
|
| 0.0046 | 2900 | 8.1415 | |
|
|
| 0.0048 | 3000 | 8.0404 | |
|
|
| 0.0050 | 3100 | 7.9698 | |
|
|
| 0.0051 | 3200 | 7.9205 | |
|
|
| 0.0053 | 3300 | 7.8314 | |
|
|
| 0.0054 | 3400 | 7.8369 | |
|
|
| 0.0056 | 3500 | 7.6403 | |
|
|
| 0.0058 | 3600 | 7.5842 | |
|
|
| 0.0059 | 3700 | 7.5812 | |
|
|
| 0.0061 | 3800 | 7.4335 | |
|
|
| 0.0062 | 3900 | 7.4917 | |
|
|
| 0.0064 | 4000 | 7.3204 | |
|
|
| 0.0066 | 4100 | 7.2971 | |
|
|
| 0.0067 | 4200 | 7.2233 | |
|
|
| 0.0069 | 4300 | 7.2081 | |
|
|
| 0.0070 | 4400 | 7.1364 | |
|
|
| 0.0072 | 4500 | 7.0663 | |
|
|
| 0.0074 | 4600 | 6.9601 | |
|
|
| 0.0075 | 4700 | 6.9546 | |
|
|
| 0.0077 | 4800 | 6.9019 | |
|
|
| 0.0078 | 4900 | 6.8801 | |
|
|
| 0.0080 | 5000 | 6.7734 | |
|
|
| 0.0082 | 5100 | 6.7648 | |
|
|
| 0.0083 | 5200 | 6.7498 | |
|
|
| 0.0085 | 5300 | 6.6872 | |
|
|
| 0.0086 | 5400 | 6.6264 | |
|
|
| 0.0088 | 5500 | 6.579 | |
|
|
| 0.0090 | 5600 | 6.6001 | |
|
|
| 0.0091 | 5700 | 6.5971 | |
|
|
| 0.0093 | 5800 | 6.4694 | |
|
|
| 0.0094 | 5900 | 6.3983 | |
|
|
| 0.0096 | 6000 | 6.4477 | |
|
|
| 0.0098 | 6100 | 6.4308 | |
|
|
| 0.0099 | 6200 | 6.4248 | |
|
|
| 0.0101 | 6300 | 6.2642 | |
|
|
| 0.0102 | 6400 | 6.2763 | |
|
|
| 0.0104 | 6500 | 6.3878 | |
|
|
| 0.0106 | 6600 | 6.2601 | |
|
|
| 0.0107 | 6700 | 6.1789 | |
|
|
| 0.0109 | 6800 | 6.1773 | |
|
|
| 0.0110 | 6900 | 6.1439 | |
|
|
| 0.0112 | 7000 | 6.1863 | |
|
|
| 0.0114 | 7100 | 6.0513 | |
|
|
| 0.0115 | 7200 | 6.0671 | |
|
|
| 0.0117 | 7300 | 6.0212 | |
|
|
| 0.0118 | 7400 | 6.0043 | |
|
|
| 0.0120 | 7500 | 6.0166 | |
|
|
| 0.0122 | 7600 | 5.9754 | |
|
|
| 0.0123 | 7700 | 5.9211 | |
|
|
| 0.0125 | 7800 | 5.7867 | |
|
|
| 0.0126 | 7900 | 5.8534 | |
|
|
| 0.0128 | 8000 | 5.7708 | |
|
|
| 0.0130 | 8100 | 5.8328 | |
|
|
| 0.0131 | 8200 | 5.7417 | |
|
|
| 0.0133 | 8300 | 5.8097 | |
|
|
| 0.0134 | 8400 | 5.7578 | |
|
|
| 0.0136 | 8500 | 5.643 | |
|
|
| 0.0138 | 8600 | 5.6401 | |
|
|
| 0.0139 | 8700 | 5.6627 | |
|
|
| 0.0141 | 8800 | 5.6167 | |
|
|
| 0.0142 | 8900 | 5.6539 | |
|
|
| 0.0144 | 9000 | 5.4513 | |
|
|
| 0.0146 | 9100 | 5.4132 | |
|
|
| 0.0147 | 9200 | 5.4714 | |
|
|
| 0.0149 | 9300 | 5.4786 | |
|
|
| 0.0150 | 9400 | 5.3928 | |
|
|
| 0.0152 | 9500 | 5.4774 | |
|
|
| 0.0154 | 9600 | 5.2881 | |
|
|
| 0.0155 | 9700 | 5.3699 | |
|
|
| 0.0157 | 9800 | 5.1483 | |
|
|
| 0.0158 | 9900 | 5.3051 | |
|
|
| 0.0160 | 10000 | 5.2546 | |
|
|
| 0.0162 | 10100 | 5.2314 | |
|
|
| 0.0163 | 10200 | 5.1783 | |
|
|
| 0.0165 | 10300 | 5.2074 | |
|
|
| 0.0166 | 10400 | 5.2825 | |
|
|
| 0.0168 | 10500 | 5.1715 | |
|
|
| 0.0170 | 10600 | 5.087 | |
|
|
| 0.0171 | 10700 | 5.082 | |
|
|
| 0.0173 | 10800 | 4.9111 | |
|
|
| 0.0174 | 10900 | 5.0213 | |
|
|
| 0.0176 | 11000 | 4.9898 | |
|
|
| 0.0178 | 11100 | 4.7734 | |
|
|
| 0.0179 | 11200 | 4.9511 | |
|
|
| 0.0181 | 11300 | 5.0481 | |
|
|
| 0.0182 | 11400 | 4.8441 | |
|
|
| 0.0184 | 11500 | 4.873 | |
|
|
| 0.0186 | 11600 | 4.9988 | |
|
|
| 0.0187 | 11700 | 4.7653 | |
|
|
| 0.0189 | 11800 | 4.804 | |
|
|
| 0.0190 | 11900 | 4.8288 | |
|
|
| 0.0192 | 12000 | 4.7053 | |
|
|
| 0.0194 | 12100 | 4.6887 | |
|
|
| 0.0195 | 12200 | 4.7832 | |
|
|
| 0.0197 | 12300 | 4.6817 | |
|
|
| 0.0198 | 12400 | 4.6252 | |
|
|
| 0.0200 | 12500 | 4.5936 | |
|
|
| 0.0202 | 12600 | 4.7452 | |
|
|
| 0.0203 | 12700 | 4.5321 | |
|
|
| 0.0205 | 12800 | 4.4964 | |
|
|
| 0.0206 | 12900 | 4.4421 | |
|
|
| 0.0208 | 13000 | 4.3782 | |
|
|
| 0.0210 | 13100 | 4.5169 | |
|
|
| 0.0211 | 13200 | 4.533 | |
|
|
| 0.0213 | 13300 | 4.3725 | |
|
|
| 0.0214 | 13400 | 4.2911 | |
|
|
| 0.0216 | 13500 | 4.2261 | |
|
|
| 0.0218 | 13600 | 4.2467 | |
|
|
| 0.0219 | 13700 | 4.1558 | |
|
|
| 0.0221 | 13800 | 4.2794 | |
|
|
| 0.0222 | 13900 | 4.2383 | |
|
|
| 0.0224 | 14000 | 4.1654 | |
|
|
| 0.0226 | 14100 | 4.158 | |
|
|
| 0.0227 | 14200 | 4.1299 | |
|
|
| 0.0229 | 14300 | 4.1902 | |
|
|
| 0.0230 | 14400 | 3.7853 | |
|
|
| 0.0232 | 14500 | 4.0514 | |
|
|
| 0.0234 | 14600 | 4.1655 | |
|
|
| 0.0235 | 14700 | 4.051 | |
|
|
| 0.0237 | 14800 | 4.078 | |
|
|
| 0.0238 | 14900 | 4.1193 | |
|
|
| 0.0240 | 15000 | 4.1536 | |
|
|
| 0.0242 | 15100 | 3.935 | |
|
|
| 0.0243 | 15200 | 3.9535 | |
|
|
| 0.0245 | 15300 | 3.7051 | |
|
|
| 0.0246 | 15400 | 3.8329 | |
|
|
| 0.0248 | 15500 | 3.9412 | |
|
|
| 0.0250 | 15600 | 3.6668 | |
|
|
| 0.0251 | 15700 | 3.7758 | |
|
|
| 0.0253 | 15800 | 3.8805 | |
|
|
| 0.0254 | 15900 | 3.8848 | |
|
|
| 0.0256 | 16000 | 3.75 | |
|
|
| 0.0258 | 16100 | 3.5685 | |
|
|
| 0.0259 | 16200 | 3.7016 | |
|
|
| 0.0261 | 16300 | 4.0955 | |
|
|
| 0.0262 | 16400 | 3.7577 | |
|
|
| 0.0264 | 16500 | 3.7485 | |
|
|
| 0.0266 | 16600 | 3.8263 | |
|
|
| 0.0267 | 16700 | 3.6922 | |
|
|
| 0.0269 | 16800 | 3.6568 | |
|
|
| 0.0270 | 16900 | 3.7317 | |
|
|
| 0.0272 | 17000 | 3.5089 | |
|
|
| 0.0274 | 17100 | 3.7377 | |
|
|
| 0.0275 | 17200 | 3.6206 | |
|
|
| 0.0277 | 17300 | 3.3702 | |
|
|
| 0.0278 | 17400 | 3.5126 | |
|
|
| 0.0280 | 17500 | 3.4841 | |
|
|
| 0.0282 | 17600 | 3.1464 | |
|
|
| 0.0283 | 17700 | 3.7012 | |
|
|
| 0.0285 | 17800 | 3.5802 | |
|
|
| 0.0286 | 17900 | 3.4952 | |
|
|
| 0.0288 | 18000 | 3.1174 | |
|
|
| 0.0290 | 18100 | 3.3134 | |
|
|
| 0.0291 | 18200 | 3.3578 | |
|
|
| 0.0293 | 18300 | 3.0209 | |
|
|
| 0.0294 | 18400 | 3.3796 | |
|
|
| 0.0296 | 18500 | 3.2287 | |
|
|
| 0.0298 | 18600 | 3.1537 | |
|
|
| 0.0299 | 18700 | 2.9073 | |
|
|
| 0.0301 | 18800 | 3.3444 | |
|
|
| 0.0302 | 18900 | 3.1341 | |
|
|
| 0.0304 | 19000 | 2.8862 | |
|
|
| 0.0306 | 19100 | 3.2033 | |
|
|
| 0.0307 | 19200 | 3.2764 | |
|
|
| 0.0309 | 19300 | 3.0725 | |
|
|
| 0.0310 | 19400 | 3.0436 | |
|
|
| 0.0312 | 19500 | 3.3493 | |
|
|
|
|
|
</details> |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.8.10 |
|
|
- Sentence Transformers: 3.1.1 |
|
|
- Transformers: 4.45.2 |
|
|
- PyTorch: 2.4.1+cu118 |
|
|
- Accelerate: 1.0.1 |
|
|
- Datasets: 3.0.1 |
|
|
- Tokenizers: 0.20.3 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### CoSENTLoss |
|
|
```bibtex |
|
|
@online{kexuefm-8847, |
|
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
|
author={Su Jianlin}, |
|
|
year={2022}, |
|
|
month={Jan}, |
|
|
url={https://kexue.fm/archives/8847}, |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |