metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets:
- youssefkhalil320/pairs_three_scores_v5
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80000003
- loss:CoSENTLoss
widget:
- source_sentence: durable pvc swim ring
sentences:
- flaky croissant
- urban shoes
- warm drinks mug
- source_sentence: iso mak retard capsules
sentences:
- savory baguette
- shea butter body cream
- softwheeled cruiser
- source_sentence: love sandra potty
sentences:
- utensil holder
- olive pants
- headwear
- source_sentence: dusky hair brush
sentences:
- back compartment laptop
- rubber feet platter
- honed blade knife
- source_sentence: nkd skn
sentences:
- fruit fragrances nail polish remover
- panini salmon
- hand drawing bag
all-MiniLM-L6-v8-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the pairs_three_scores_v5 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'nkd skn',
'hand drawing bag',
'panini salmon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
pairs_three_scores_v5
- Dataset: pairs_three_scores_v5 at 3d8c457
- Size: 80,000,003 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.06 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 5.71 tokens
- max: 13 tokens
- min: 0.0
- mean: 0.11
- max: 1.0
- Samples:
sentence1 sentence2 score vanilla hair creamfree of paraben hair mask0.5nourishing shampoocumin lemon tea0.0safe materials pacifierfacial serum0.5 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
pairs_three_scores_v5
- Dataset: pairs_three_scores_v5 at 3d8c457
- Size: 20,000,001 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.21 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 5.75 tokens
- max: 12 tokens
- min: 0.0
- mean: 0.11
- max: 1.0
- Samples:
sentence1 sentence2 score teddy bear toylong lasting cat food0.0eva hair treatmentfresh pineapple0.0soft wave hair conditionerhybrid seat bike0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0002 | 100 | 10.8792 |
| 0.0003 | 200 | 10.9284 |
| 0.0005 | 300 | 10.6466 |
| 0.0006 | 400 | 10.841 |
| 0.0008 | 500 | 10.8094 |
| 0.0010 | 600 | 10.4323 |
| 0.0011 | 700 | 10.3032 |
| 0.0013 | 800 | 10.4006 |
| 0.0014 | 900 | 10.4743 |
| 0.0016 | 1000 | 10.2334 |
| 0.0018 | 1100 | 10.0135 |
| 0.0019 | 1200 | 9.7874 |
| 0.0021 | 1300 | 9.7419 |
| 0.0022 | 1400 | 9.7412 |
| 0.0024 | 1500 | 9.4585 |
| 0.0026 | 1600 | 9.5339 |
| 0.0027 | 1700 | 9.4345 |
| 0.0029 | 1800 | 9.1733 |
| 0.0030 | 1900 | 8.9952 |
| 0.0032 | 2000 | 8.9669 |
| 0.0034 | 2100 | 8.8152 |
| 0.0035 | 2200 | 8.7936 |
| 0.0037 | 2300 | 8.6771 |
| 0.0038 | 2400 | 8.4648 |
| 0.0040 | 2500 | 8.5764 |
| 0.0042 | 2600 | 8.4587 |
| 0.0043 | 2700 | 8.2966 |
| 0.0045 | 2800 | 8.2329 |
| 0.0046 | 2900 | 8.1415 |
| 0.0048 | 3000 | 8.0404 |
| 0.0050 | 3100 | 7.9698 |
| 0.0051 | 3200 | 7.9205 |
| 0.0053 | 3300 | 7.8314 |
| 0.0054 | 3400 | 7.8369 |
| 0.0056 | 3500 | 7.6403 |
| 0.0058 | 3600 | 7.5842 |
| 0.0059 | 3700 | 7.5812 |
| 0.0061 | 3800 | 7.4335 |
| 0.0062 | 3900 | 7.4917 |
| 0.0064 | 4000 | 7.3204 |
| 0.0066 | 4100 | 7.2971 |
| 0.0067 | 4200 | 7.2233 |
| 0.0069 | 4300 | 7.2081 |
| 0.0070 | 4400 | 7.1364 |
| 0.0072 | 4500 | 7.0663 |
| 0.0074 | 4600 | 6.9601 |
| 0.0075 | 4700 | 6.9546 |
| 0.0077 | 4800 | 6.9019 |
| 0.0078 | 4900 | 6.8801 |
| 0.0080 | 5000 | 6.7734 |
| 0.0082 | 5100 | 6.7648 |
| 0.0083 | 5200 | 6.7498 |
| 0.0085 | 5300 | 6.6872 |
| 0.0086 | 5400 | 6.6264 |
| 0.0088 | 5500 | 6.579 |
| 0.0090 | 5600 | 6.6001 |
| 0.0091 | 5700 | 6.5971 |
| 0.0093 | 5800 | 6.4694 |
| 0.0094 | 5900 | 6.3983 |
| 0.0096 | 6000 | 6.4477 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}