metadata
base_model: sentence-transformers/all-mpnet-base-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1363306
- loss:AnglELoss
widget:
- source_sentence: labneh
sentences:
- iftar
- bathing suit
- coffee cup
- source_sentence: Velvet flock Veil
sentences:
- mermaid purse
- veil
- mobile bag
- source_sentence: Red lipstick
sentences:
- chemise dress
- tote
- rouge
- source_sentence: Unisex Travel bag
sentences:
- spf
- basic vega ring
- travel backpack
- source_sentence: jeremy hush book
sentences:
- chinese jumper
- perfume
- home automation device
all-mpnet-base-v3-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'jeremy hush book',
'chinese jumper',
'perfume',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.0094 | 100 | 16.2337 | - |
| 0.0188 | 200 | 13.5901 | - |
| 0.0282 | 300 | 9.8565 | - |
| 0.0376 | 400 | 8.3332 | - |
| 0.0469 | 500 | 8.1261 | - |
| 0.0563 | 600 | 8.0697 | - |
| 0.0657 | 700 | 8.0298 | - |
| 0.0751 | 800 | 8.033 | - |
| 0.0845 | 900 | 7.9858 | - |
| 0.0939 | 1000 | 8.012 | - |
| 0.1033 | 1100 | 7.9745 | - |
| 0.1127 | 1200 | 8.0091 | - |
| 0.1221 | 1300 | 8.0221 | - |
| 0.1314 | 1400 | 7.9583 | - |
| 0.1408 | 1500 | 8.0031 | - |
| 0.1502 | 1600 | 7.9985 | - |
| 0.1596 | 1700 | 7.9647 | - |
| 0.1690 | 1800 | 7.9857 | - |
| 0.1784 | 1900 | 7.9806 | - |
| 0.1878 | 2000 | 7.9761 | - |
| 0.1972 | 2100 | 7.9696 | - |
| 0.2066 | 2200 | 8.0014 | - |
| 0.2159 | 2300 | 7.9546 | - |
| 0.2253 | 2400 | 7.9874 | - |
| 0.2347 | 2500 | 7.9846 | - |
| 0.2441 | 2600 | 7.9664 | - |
| 0.2535 | 2700 | 7.9725 | - |
| 0.2629 | 2800 | 7.9419 | - |
| 0.2723 | 2900 | 7.9786 | - |
| 0.2817 | 3000 | 7.9479 | - |
| 0.2911 | 3100 | 7.9526 | - |
| 0.3004 | 3200 | 7.9613 | - |
| 0.3098 | 3300 | 7.9994 | - |
| 0.3192 | 3400 | 7.9464 | - |
| 0.3286 | 3500 | 7.9429 | - |
| 0.3380 | 3600 | 7.9539 | - |
| 0.3474 | 3700 | 7.9699 | - |
| 0.3568 | 3800 | 7.9144 | - |
| 0.3662 | 3900 | 7.9424 | - |
| 0.3756 | 4000 | 7.9361 | - |
| 0.3849 | 4100 | 7.9144 | - |
| 0.3943 | 4200 | 7.907 | - |
| 0.4037 | 4300 | 7.9049 | - |
| 0.4131 | 4400 | 7.939 | - |
| 0.4225 | 4500 | 7.9067 | - |
| 0.4319 | 4600 | 7.9149 | - |
| 0.4413 | 4700 | 7.9705 | - |
| 0.4507 | 4800 | 7.8992 | - |
| 0.4601 | 4900 | 7.9077 | - |
| 0.4694 | 5000 | 7.8992 | 7.9167 |
| 0.4788 | 5100 | 7.914 | - |
| 0.4882 | 5200 | 7.8913 | - |
| 0.4976 | 5300 | 7.8999 | - |
| 0.5070 | 5400 | 7.8818 | - |
| 0.5164 | 5500 | 7.9383 | - |
| 0.5258 | 5600 | 7.9094 | - |
| 0.5352 | 5700 | 7.8986 | - |
| 0.5445 | 5800 | 7.9015 | - |
| 0.5539 | 5900 | 7.9059 | - |
| 0.5633 | 6000 | 7.8524 | - |
| 0.5727 | 6100 | 7.8788 | - |
| 0.5821 | 6200 | 7.8712 | - |
| 0.5915 | 6300 | 7.8967 | - |
| 0.6009 | 6400 | 7.8677 | - |
| 0.6103 | 6500 | 7.9132 | - |
| 0.6197 | 6600 | 7.853 | - |
| 0.6290 | 6700 | 7.8968 | - |
| 0.6384 | 6800 | 7.8656 | - |
| 0.6478 | 6900 | 7.8801 | - |
| 0.6572 | 7000 | 7.8378 | - |
| 0.6666 | 7100 | 7.8554 | - |
| 0.6760 | 7200 | 7.8305 | - |
| 0.6854 | 7300 | 7.8613 | - |
| 0.6948 | 7400 | 7.8554 | - |
| 0.7042 | 7500 | 7.8653 | - |
| 0.7135 | 7600 | 7.8387 | - |
| 0.7229 | 7700 | 7.8513 | - |
| 0.7323 | 7800 | 7.8496 | - |
| 0.7417 | 7900 | 7.8276 | - |
| 0.7511 | 8000 | 7.8353 | - |
| 0.7605 | 8100 | 7.8103 | - |
| 0.7699 | 8200 | 7.8622 | - |
| 0.7793 | 8300 | 7.832 | - |
| 0.7887 | 8400 | 7.8349 | - |
| 0.7980 | 8500 | 7.855 | - |
| 0.8074 | 8600 | 7.8316 | - |
| 0.8168 | 8700 | 7.8066 | - |
| 0.8262 | 8800 | 7.8166 | - |
| 0.8356 | 8900 | 7.8588 | - |
| 0.8450 | 9000 | 7.8042 | - |
| 0.8544 | 9100 | 7.8431 | - |
| 0.8638 | 9200 | 7.7947 | - |
| 0.8732 | 9300 | 7.8175 | - |
| 0.8825 | 9400 | 7.8299 | - |
| 0.8919 | 9500 | 7.8455 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}