|
|
--- |
|
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
|
language: |
|
|
- en |
|
|
library_name: sentence-transformers |
|
|
license: apache-2.0 |
|
|
pipeline_tag: sentence-similarity |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:1363306 |
|
|
- loss:AnglELoss |
|
|
widget: |
|
|
- source_sentence: labneh |
|
|
sentences: |
|
|
- iftar |
|
|
- bathing suit |
|
|
- coffee cup |
|
|
- source_sentence: Velvet flock Veil |
|
|
sentences: |
|
|
- mermaid purse |
|
|
- veil |
|
|
- mobile bag |
|
|
- source_sentence: Red lipstick |
|
|
sentences: |
|
|
- chemise dress |
|
|
- tote |
|
|
- rouge |
|
|
- source_sentence: Unisex Travel bag |
|
|
sentences: |
|
|
- spf |
|
|
- basic vega ring |
|
|
- travel backpack |
|
|
- source_sentence: jeremy hush book |
|
|
sentences: |
|
|
- chinese jumper |
|
|
- perfume |
|
|
- home automation device |
|
|
--- |
|
|
|
|
|
# all-mpnet-base-v3-pair_score |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 --> |
|
|
- **Maximum Sequence Length:** 384 tokens |
|
|
- **Output Dimensionality:** 768 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
- **Language:** en |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'jeremy hush book', |
|
|
'chinese jumper', |
|
|
'perfume', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 128 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 2 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `fp16`: True |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 128 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 2 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | loss | |
|
|
|:------:|:----:|:-------------:|:------:| |
|
|
| 0.0094 | 100 | 16.2337 | - | |
|
|
| 0.0188 | 200 | 13.5901 | - | |
|
|
| 0.0282 | 300 | 9.8565 | - | |
|
|
| 0.0376 | 400 | 8.3332 | - | |
|
|
| 0.0469 | 500 | 8.1261 | - | |
|
|
| 0.0563 | 600 | 8.0697 | - | |
|
|
| 0.0657 | 700 | 8.0298 | - | |
|
|
| 0.0751 | 800 | 8.033 | - | |
|
|
| 0.0845 | 900 | 7.9858 | - | |
|
|
| 0.0939 | 1000 | 8.012 | - | |
|
|
| 0.1033 | 1100 | 7.9745 | - | |
|
|
| 0.1127 | 1200 | 8.0091 | - | |
|
|
| 0.1221 | 1300 | 8.0221 | - | |
|
|
| 0.1314 | 1400 | 7.9583 | - | |
|
|
| 0.1408 | 1500 | 8.0031 | - | |
|
|
| 0.1502 | 1600 | 7.9985 | - | |
|
|
| 0.1596 | 1700 | 7.9647 | - | |
|
|
| 0.1690 | 1800 | 7.9857 | - | |
|
|
| 0.1784 | 1900 | 7.9806 | - | |
|
|
| 0.1878 | 2000 | 7.9761 | - | |
|
|
| 0.1972 | 2100 | 7.9696 | - | |
|
|
| 0.2066 | 2200 | 8.0014 | - | |
|
|
| 0.2159 | 2300 | 7.9546 | - | |
|
|
| 0.2253 | 2400 | 7.9874 | - | |
|
|
| 0.2347 | 2500 | 7.9846 | - | |
|
|
| 0.2441 | 2600 | 7.9664 | - | |
|
|
| 0.2535 | 2700 | 7.9725 | - | |
|
|
| 0.2629 | 2800 | 7.9419 | - | |
|
|
| 0.2723 | 2900 | 7.9786 | - | |
|
|
| 0.2817 | 3000 | 7.9479 | - | |
|
|
| 0.2911 | 3100 | 7.9526 | - | |
|
|
| 0.3004 | 3200 | 7.9613 | - | |
|
|
| 0.3098 | 3300 | 7.9994 | - | |
|
|
| 0.3192 | 3400 | 7.9464 | - | |
|
|
| 0.3286 | 3500 | 7.9429 | - | |
|
|
| 0.3380 | 3600 | 7.9539 | - | |
|
|
| 0.3474 | 3700 | 7.9699 | - | |
|
|
| 0.3568 | 3800 | 7.9144 | - | |
|
|
| 0.3662 | 3900 | 7.9424 | - | |
|
|
| 0.3756 | 4000 | 7.9361 | - | |
|
|
| 0.3849 | 4100 | 7.9144 | - | |
|
|
| 0.3943 | 4200 | 7.907 | - | |
|
|
| 0.4037 | 4300 | 7.9049 | - | |
|
|
| 0.4131 | 4400 | 7.939 | - | |
|
|
| 0.4225 | 4500 | 7.9067 | - | |
|
|
| 0.4319 | 4600 | 7.9149 | - | |
|
|
| 0.4413 | 4700 | 7.9705 | - | |
|
|
| 0.4507 | 4800 | 7.8992 | - | |
|
|
| 0.4601 | 4900 | 7.9077 | - | |
|
|
| 0.4694 | 5000 | 7.8992 | 7.9167 | |
|
|
| 0.4788 | 5100 | 7.914 | - | |
|
|
| 0.4882 | 5200 | 7.8913 | - | |
|
|
| 0.4976 | 5300 | 7.8999 | - | |
|
|
| 0.5070 | 5400 | 7.8818 | - | |
|
|
| 0.5164 | 5500 | 7.9383 | - | |
|
|
| 0.5258 | 5600 | 7.9094 | - | |
|
|
| 0.5352 | 5700 | 7.8986 | - | |
|
|
| 0.5445 | 5800 | 7.9015 | - | |
|
|
| 0.5539 | 5900 | 7.9059 | - | |
|
|
| 0.5633 | 6000 | 7.8524 | - | |
|
|
| 0.5727 | 6100 | 7.8788 | - | |
|
|
| 0.5821 | 6200 | 7.8712 | - | |
|
|
| 0.5915 | 6300 | 7.8967 | - | |
|
|
| 0.6009 | 6400 | 7.8677 | - | |
|
|
| 0.6103 | 6500 | 7.9132 | - | |
|
|
| 0.6197 | 6600 | 7.853 | - | |
|
|
| 0.6290 | 6700 | 7.8968 | - | |
|
|
| 0.6384 | 6800 | 7.8656 | - | |
|
|
| 0.6478 | 6900 | 7.8801 | - | |
|
|
| 0.6572 | 7000 | 7.8378 | - | |
|
|
| 0.6666 | 7100 | 7.8554 | - | |
|
|
| 0.6760 | 7200 | 7.8305 | - | |
|
|
| 0.6854 | 7300 | 7.8613 | - | |
|
|
| 0.6948 | 7400 | 7.8554 | - | |
|
|
| 0.7042 | 7500 | 7.8653 | - | |
|
|
| 0.7135 | 7600 | 7.8387 | - | |
|
|
| 0.7229 | 7700 | 7.8513 | - | |
|
|
| 0.7323 | 7800 | 7.8496 | - | |
|
|
| 0.7417 | 7900 | 7.8276 | - | |
|
|
| 0.7511 | 8000 | 7.8353 | - | |
|
|
| 0.7605 | 8100 | 7.8103 | - | |
|
|
| 0.7699 | 8200 | 7.8622 | - | |
|
|
| 0.7793 | 8300 | 7.832 | - | |
|
|
| 0.7887 | 8400 | 7.8349 | - | |
|
|
| 0.7980 | 8500 | 7.855 | - | |
|
|
| 0.8074 | 8600 | 7.8316 | - | |
|
|
| 0.8168 | 8700 | 7.8066 | - | |
|
|
| 0.8262 | 8800 | 7.8166 | - | |
|
|
| 0.8356 | 8900 | 7.8588 | - | |
|
|
| 0.8450 | 9000 | 7.8042 | - | |
|
|
| 0.8544 | 9100 | 7.8431 | - | |
|
|
| 0.8638 | 9200 | 7.7947 | - | |
|
|
| 0.8732 | 9300 | 7.8175 | - | |
|
|
| 0.8825 | 9400 | 7.8299 | - | |
|
|
| 0.8919 | 9500 | 7.8455 | - | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.8.10 |
|
|
- Sentence Transformers: 3.1.1 |
|
|
- Transformers: 4.45.2 |
|
|
- PyTorch: 2.4.1+cu118 |
|
|
- Accelerate: 1.0.1 |
|
|
- Datasets: 3.0.1 |
|
|
- Tokenizers: 0.20.3 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### AnglELoss |
|
|
```bibtex |
|
|
@misc{li2023angleoptimized, |
|
|
title={AnglE-optimized Text Embeddings}, |
|
|
author={Xianming Li and Jing Li}, |
|
|
year={2023}, |
|
|
eprint={2309.12871}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |