WSYue-ASR / README.md
ASLP-lab's picture
Update README.md
a02ffa0 verified
---
license: apache-2.0
---
# WenetSpeech-Yue: A Large-scale Cantonese Speech Corpus with Multi-dimensional Annotation
<div>
<img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/wenetspeech_yue.svg" />
</div>
## πŸ“‚ Project Tree
The structure of **WSYue-ASR** is organized as follows:
```
WSYue-ASR
β”œβ”€β”€ sensevoice_small_yue/
β”‚ β”œβ”€β”€ config.yaml
β”‚ β”œβ”€β”€ configuration.json
β”‚ └── model.pt
β”‚
β”œβ”€β”€ u2pp_conformer_yue/
β”‚ β”œβ”€β”€ bpe.model
β”‚ β”œβ”€β”€ lang_char.txt
β”‚ └── train.yaml
β”‚ └── u2pp_conformer_yue.pt
β”‚
β”œβ”€β”€ whisper_medium_yue/
β”‚ β”œβ”€β”€ train.yaml
β”‚ └── whisper_medium_yue.py
β”‚
β”œβ”€β”€ .gitattributes
└── README.md
```
## ASR Leaderboard
<table border="0" cellspacing="0" cellpadding="6" style="border-collapse:collapse;">
<tr>
<th align="left" rowspan="2">Model</th>
<th align="center" rowspan="2">#Params (M)</th>
<th align="center" colspan="2">In-House</th>
<th align="center" colspan="5">Open-Source</th>
<th align="center" colspan="2">WSYue-eval</th>
</tr>
<tr>
<th align="center">Dialogue</th>
<th align="center">Reading</th>
<th align="center">yue</th>
<th align="center">HK</th>
<th align="center">MDCC</th>
<th align="center">Daily_Use</th>
<th align="center">Commands</th>
<th align="center">Short</th>
<th align="center">Long</th>
</tr>
<tr><td align="left" colspan="11"><b>w/o LLM</b></td></tr>
<tr>
<td align="left"><b>Conformer-Yue⭐</b></td><td align="center">130</td><td align="center"><b>16.57</b></td><td align="center">7.82</td><td align="center">7.72</td><td align="center">11.42</td><td align="center">5.73</td><td align="center">5.73</td><td align="center">8.97</td><td align="center"><ins>5.05</ins></td><td align="center">8.89</td>
</tr>
<tr>
<td align="left">Paraformer</td><td align="center">220</td><td align="center">83.22</td><td align="center">51.97</td><td align="center">70.16</td><td align="center">68.49</td><td align="center">47.67</td><td align="center">79.31</td><td align="center">69.32</td><td align="center">73.64</td><td align="center">89.00</td>
</tr>
<tr>
<td align="left">SenseVoice-small</td><td align="center">234</td><td align="center">21.08</td><td align="center"><ins>6.52</ins></td><td align="center">8.05</td><td align="center"><b>7.34</b></td><td align="center">6.34</td><td align="center">5.74</td><td align="center"><ins>6.65</ins></td><td align="center">6.69</td><td align="center">9.95</td>
<tr>
<td align="left"><b>SenseVoice-s-Yue⭐</b></td><td align="center">234</td><td align="center">19.19</td><td align="center">6.71</td><td align="center">6.87</td><td align="center">8.68</td><td align="center"><ins>5.43</ins></td><td align="center">5.24</td><td align="center">6.93</td><td align="center">5.23</td><td align="center">8.63</td>
</tr>
</tr>
<tr>
<td align="left">Dolphin-small</td><td align="center">372</td><td align="center">59.20</td><td align="center">7.38</td><td align="center">39.69</td><td align="center">51.29</td><td align="center">26.39</td><td align="center">7.21</td><td align="center">9.68</td><td align="center">32.32</td><td align="center">58.20</td>
</tr>
<tr>
<td align="left">TeleASR</td><td align="center">700</td><td align="center">37.18</td><td align="center">7.27</td><td align="center">7.02</td><td align="center"><ins>7.88</ins></td><td align="center">6.25</td><td align="center">8.02</td><td align="center"><b>5.98</b></td><td align="center">6.23</td><td align="center">11.33</td>
</tr>
<tr>
<td align="left">Whisper-medium</td><td align="center">769</td><td align="center">75.50</td><td align="center">68.69</td><td align="center">59.44</td><td align="center">62.50</td><td align="center">62.31</td><td align="center">64.41</td><td align="center">80.41</td><td align="center">80.82</td><td align="center">50.96</td>
</tr>
<tr>
<td align="left"><b>Whisper-m-Yue⭐</b></td><td align="center">769</td><td align="center">18.69</td><td align="center">6.86</td><td align="center"><ins>6.86</ins></td><td align="center">11.03</td><td align="center">5.49</td><td align="center"><ins>4.70</ins></td><td align="center">8.51</td><td align="center"><ins>5.05</ins></td><td align="center"><ins>8.05</ins></td>
</tr>
<tr>
<td align="left">FireRedASR-AED-L</td><td align="center">1100</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">55.37</td><td align="center">50.26</td>
</tr>
<tr>
<td align="left">Whisper-large-v3</td><td align="center">1550</td><td align="center">45.09</td><td align="center">15.46</td><td align="center">12.85</td><td align="center">16.36</td><td align="center">14.63</td><td align="center">17.84</td><td align="center">20.70</td><td align="center">12.95</td><td align="center">26.86</td>
</tr>
<tr><td align="left" colspan="11"><b>w/ LLM</b></td></tr>
<tr>
<td align="left">Qwen2.5-Omni-3B</td><td align="center">3000</td><td align="center">72.01</td><td align="center">7.49</td><td align="center">12.59</td><td align="center">11.75</td><td align="center">38.91</td><td align="center">10.59</td><td align="center">25.78</td><td align="center">67.95</td><td align="center">88.46</td>
</tr>
<tr>
<td align="left">Kimi-Audio</td><td align="center">7000</td><td align="center">68.65</td><td align="center">24.34</td><td align="center">40.90</td><td align="center">38.72</td><td align="center">30.72</td><td align="center">44.29</td><td align="center">45.54</td><td align="center">50.86</td><td align="center">33.49</td>
</tr>
<tr>
<td align="left">FireRedASR-LLM-L</td><td align="center">8300</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">49.87</td><td align="center">45.92</td>
</tr>
<tr>
<td align="left"><b>Conformer-LLM-Yue⭐</b></td><td align="center">4200</td><td align="center"><ins>17.22</ins></td><td align="center"><b>6.21</b></td><td align="center"><b>6.23</b></td><td align="center">9.52</td><td align="center"><b>4.35</b></td><td align="center"><b>4.57</b></td><td align="center">6.98</td><td align="center"><b>4.73</b></td><td align="center"><b>7.91</b></td>
</tr>
</table>
## ASR Inference
### U2pp_Conformer_Yue
```
dir=u2pp_conformer_yue
decode_checkpoint=$dir/u2pp_conformer_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir
python wenet/bin/recognize.py \
--gpu 0 \
--modes attention_rescoring \
--config $dir/train.yaml \
--test_data $test_set/data.list \
--checkpoint $decode_checkpoint \
--beam_size 10 \
--batch_size 32 \
--ctc_weight 0.5 \
--result_dir $test_result_dir \
--decoding_chunk_size -1
```
### Whisper_Medium_Yue
```
dir=whisper_medium_yue
decode_checkpoint=$dir/whisper_medium_yue.pt
test_set=path/to/test_set
test_result_dir=path/to/test_result_dir
python wenet/bin/recognize.py \
--gpu 0 \
--modes attention \
--config $dir/train.yaml \
--test_data $test_set/data.list \
--checkpoint $decode_checkpoint \
--beam_size 10 \
--batch_size 32 \
--blank_penalty 0.0 \
--ctc_weight 0.0 \
--reverse_weight 0.0 \
--result_dir $test_result_dir \
--decoding_chunk_size -1
```
### SenseVoice_Small_Yue
```
from funasr import AutoModel
model_dir = "sensevoice_small_yue"
model = AutoModel(
model=model_path,
device="cuda:0",
)
res = model.generate(
wav_path,
cache={},
language="yue",
use_itn=True,
batch_size=64,
)
```