my_new_model / README.md
CohleM's picture
update model card README.md
571678a
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my_new_model
    results: []

my_new_model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4151
  • Accuracy: 0.882
  • F1: 0.8815
  • Precision: 0.8825
  • Recall: 0.882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 125 0.5276 0.846 0.8496 0.8591 0.846
No log 2.0 250 0.3993 0.874 0.8755 0.8801 0.874
No log 3.0 375 0.3623 0.878 0.8808 0.8896 0.878
0.5033 4.0 500 0.3386 0.898 0.8985 0.9005 0.898
0.5033 5.0 625 0.3791 0.884 0.8840 0.8850 0.884
0.5033 6.0 750 0.3490 0.898 0.8993 0.9020 0.898
0.5033 7.0 875 0.3899 0.89 0.8898 0.8897 0.89
0.1244 8.0 1000 0.4148 0.87 0.8690 0.8686 0.87
0.1244 9.0 1125 0.4030 0.888 0.8880 0.8887 0.888
0.1244 10.0 1250 0.4151 0.882 0.8815 0.8825 0.882

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3