|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: my_new_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_new_model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4151 |
|
- Accuracy: 0.882 |
|
- F1: 0.8815 |
|
- Precision: 0.8825 |
|
- Recall: 0.882 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 125 | 0.5276 | 0.846 | 0.8496 | 0.8591 | 0.846 | |
|
| No log | 2.0 | 250 | 0.3993 | 0.874 | 0.8755 | 0.8801 | 0.874 | |
|
| No log | 3.0 | 375 | 0.3623 | 0.878 | 0.8808 | 0.8896 | 0.878 | |
|
| 0.5033 | 4.0 | 500 | 0.3386 | 0.898 | 0.8985 | 0.9005 | 0.898 | |
|
| 0.5033 | 5.0 | 625 | 0.3791 | 0.884 | 0.8840 | 0.8850 | 0.884 | |
|
| 0.5033 | 6.0 | 750 | 0.3490 | 0.898 | 0.8993 | 0.9020 | 0.898 | |
|
| 0.5033 | 7.0 | 875 | 0.3899 | 0.89 | 0.8898 | 0.8897 | 0.89 | |
|
| 0.1244 | 8.0 | 1000 | 0.4148 | 0.87 | 0.8690 | 0.8686 | 0.87 | |
|
| 0.1244 | 9.0 | 1125 | 0.4030 | 0.888 | 0.8880 | 0.8887 | 0.888 | |
|
| 0.1244 | 10.0 | 1250 | 0.4151 | 0.882 | 0.8815 | 0.8825 | 0.882 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|