Backend Code Generation Model - Setup & Usage Guide
π οΈ Installation & Setup
1. Install Dependencies
pip install torch transformers datasets pandas numpy aiohttp requests
pip install accelerate # For faster training
2. Set Environment Variables
# Optional: GitHub token for collecting real repositories
export GITHUB_TOKEN="your_github_token_here"
# For GPU training (if available)
export CUDA_VISIBLE_DEVICES=0
3. Directory Structure
backend-ai-trainer/
βββ training_pipeline.py # Main pipeline code
βββ data/
β βββ raw_dataset.json # Collected training data
β βββ processed/ # Preprocessed data
βββ models/
β βββ backend_code_model/ # Trained model output
β βββ checkpoints/ # Training checkpoints
βββ evaluation/
βββ test_cases.json # Test scenarios
βββ results/ # Evaluation results
πββοΈ Quick Start
Option A: Full Automated Pipeline
import asyncio
from training_pipeline import TrainingPipeline
config = {
'base_model': 'microsoft/DialoGPT-medium',
'output_dir': './models/backend_code_model',
'github_token': 'your_token_here', # Optional
}
pipeline = TrainingPipeline(config)
asyncio.run(pipeline.run_full_pipeline())
Option B: Step-by-Step Execution
Step 1: Collect Training Data
from training_pipeline import DataCollector
import asyncio
collector = DataCollector()
# Collect from GitHub (requires token)
github_queries = [
'express api backend',
'fastapi python backend',
'django rest api',
'nodejs backend server',
'flask api backend'
]
asyncio.run(collector.collect_github_repositories(github_queries, max_repos=100))
# Generate synthetic examples
collector.generate_synthetic_examples(count=500)
# Save dataset
collector.save_dataset('training_data.json')
Step 2: Preprocess Data
from training_pipeline import DataPreprocessor
preprocessor = DataPreprocessor()
processed_examples = preprocessor.preprocess_examples(collector.collected_examples)
training_dataset = preprocessor.create_training_dataset(processed_examples)
print(f"Created dataset with {len(training_dataset)} examples")
Step 3: Train Model
from training_pipeline import CodeGenerationModel
model = CodeGenerationModel('microsoft/DialoGPT-medium')
model.fine_tune(training_dataset, output_dir='./trained_model')
Step 4: Generate Code
# Generate a complete backend application
generated_code = model.generate_code(
description="E-commerce API with user authentication and product management",
framework="fastapi",
language="python"
)
print("Generated Backend Application:")
print("=" * 50)
print(generated_code)
π― Training Configuration Options
Model Selection
# Lightweight for testing
config['base_model'] = 'microsoft/DialoGPT-small'
# Balanced performance
config['base_model'] = 'microsoft/DialoGPT-medium'
# High quality (requires more resources)
config['base_model'] = 'microsoft/DialoGPT-large'
Training Parameters
training_config = {
'num_epochs': 5, # More epochs = better learning
'batch_size': 4, # Adjust based on GPU memory
'learning_rate': 5e-5, # Conservative learning rate
'max_length': 2048, # Maximum token length
'warmup_steps': 500, # Learning rate warmup
'save_steps': 1000, # Checkpoint frequency
}
Framework Coverage
The pipeline supports these backend frameworks:
Node.js Frameworks:
- Express.js - Most popular Node.js framework
- NestJS - Enterprise-grade framework
- Koa.js - Lightweight alternative
Python Frameworks:
- FastAPI - Modern, high-performance API framework
- Django - Full-featured web framework
- Flask - Lightweight and flexible
Go Frameworks:
- Gin - HTTP web framework
- Fiber - Express-inspired framework
π Evaluation & Testing
Automatic Quality Assessment
from training_pipeline import ModelEvaluator
evaluator = ModelEvaluator()
# Test specific code generation
generated_code = model.generate_code(
description="User authentication API with JWT tokens",
framework="express",
language="javascript"
)
# Get quality scores
quality_scores = evaluator.evaluate_code_quality(generated_code, "javascript")
print(f"Syntax Correctness: {quality_scores['syntax_correctness']:.2f}")
print(f"Completeness: {quality_scores['completeness']:.2f}")
print(f"Best Practices: {quality_scores['best_practices']:.2f}")
Comprehensive Benchmarking
test_cases = [
{
'description': 'REST API for task management with user authentication',
'framework': 'express',
'language': 'javascript'
},
{
'description': 'GraphQL API for social media platform',
'framework': 'fastapi',
'language': 'python'
},
{
'description': 'Microservice for payment processing',
'framework': 'gin',
'language': 'go'
}
]
benchmark_results = evaluator.benchmark_model(model, test_cases)
print("Overall Performance:", benchmark_results)
π Advanced Usage
Custom Data Sources
# Add your own training examples
custom_examples = [
{
'description': 'Custom API requirement',
'requirements': ['Custom feature 1', 'Custom feature 2'],
'framework': 'fastapi',
'language': 'python',
'code_files': {
'main.py': '# Your custom code here',
'requirements.txt': 'fastapi\nuvicorn'
}
}
]
# Add to training data
collector.collected_examples.extend([CodeExample(**ex) for ex in custom_examples])
Fine-tuning on Specific Domains
# Focus training on specific application types
domain_specific_queries = [
'microservices architecture',
'api gateway implementation',
'database orm integration',
'authentication middleware',
'rate limiting api'
]
asyncio.run(collector.collect_github_repositories(domain_specific_queries))
Export Trained Model
# Save model for deployment
model.model.save_pretrained('./production_model')
model.tokenizer.save_pretrained('./production_model')
# Load for inference
from transformers import AutoModelForCausalLM, AutoTokenizer
production_model = AutoModelForCausalLM.from_pretrained('./production_model')
production_tokenizer = AutoTokenizer.from_pretrained('./production_model')
π§ Troubleshooting
Common Issues
1. Out of Memory Errors
# Reduce batch size
config['per_device_train_batch_size'] = 1
config['gradient_accumulation_steps'] = 4
# Use gradient checkpointing
config['gradient_checkpointing'] = True
2. Slow Training
# Enable mixed precision (if GPU supports it)
config['fp16'] = True
# Use multiple GPUs
config['dataloader_num_workers'] = 4
3. Poor Code Quality
# Increase training data diversity
collector.generate_synthetic_examples(count=1000)
# Extend training duration
config['num_train_epochs'] = 10
Performance Optimization
For CPU Training:
config['dataloader_pin_memory'] = False
config['per_device_train_batch_size'] = 1
For GPU Training:
config['fp16'] = True
config['dataloader_pin_memory'] = True
config['per_device_train_batch_size'] = 4
π Expected Results
After training on ~500-1000 examples, you should expect:
- Syntax Correctness: 85-95%
- Code Completeness: 80-90%
- Best Practices: 70-85%
- Framework Coverage: All major Node.js and Python frameworks
- Generation Speed: 2-5 seconds per application
π Continuous Improvement
Regular Retraining
# Schedule weekly data collection
import schedule
def update_training_data():
asyncio.run(collector.collect_github_repositories(['new backend trends']))
schedule.every().week.do(update_training_data)
A/B Testing Different Models
models_to_compare = [
'microsoft/DialoGPT-medium',
'microsoft/DialoGPT-large',
'gpt2-medium'
]
for base_model in models_to_compare:
model = CodeGenerationModel(base_model)
results = evaluator.benchmark_model(model, test_cases)
print(f"{base_model}: {results}")
π― Next Steps
- Start Small: Begin with synthetic data and 100-200 examples
- Add Real Data: Integrate GitHub repositories gradually
- Evaluate Regularly: Monitor quality metrics after each training session
- Expand Frameworks: Add support for new frameworks as needed
- Production Deploy: Export model for API deployment
This pipeline provides a complete foundation for building your own backend code generation AI. The modular design allows you to customize and extend each component based on your specific needs.