|
--- |
|
base_model: XGenerationLab/XiYanSQL-QwenCoder-7B-2502 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
# Notes in "XGenerationLab/XiYanSQL-QwenCoder-7B-2502": |
|
## Requirements |
|
``` |
|
transformers >= 4.37.0 |
|
``` |
|
## Quickstart |
|
|
|
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. |
|
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. |
|
|
|
``` |
|
|
|
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 |
|
【用户问题】 |
|
{question} |
|
|
|
【数据库schema】 |
|
{db_schema} |
|
|
|
【参考信息】 |
|
{evidence} |
|
|
|
【用户问题】 |
|
{question} |
|
|
|
```sql""" |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "beyoru/QwenCoderSQL_bnb_4bit" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] |
|
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") |
|
message = [{'role': 'user', 'content': prompt}] |
|
|
|
text = tokenizer.apply_chat_template( |
|
message, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=1024, |
|
temperature=0.1, |
|
top_p=0.8, |
|
do_sample=True, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
``` |
|
|
|
|
|
## Acknowledgments |
|
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community! |