input
stringlengths
33
5k
output
stringlengths
32
5k
import os import sysconfig from typing import Optional from torch.utils._triton import has_triton def enable_triton(lib_dir: Optional[str] = None) -> dict[str, str]: """ Enable NVSHMEM device functions for Triton. It performs a NVSHMEM device-side initialization on the kernel module created by Triton. Args: lib_dir (Optional[str]): The directory where the NVSHMEM device library is located. If not provided, it will use the default path where NVSHMEM wheel is installed. Returns: dict[str, str]: A dictionary containing the NVSHMEM device library name and path. """ from triton.runtime.jit import JITFunction from torch._C._distributed_c10d import _nvshmemx_cumodule_init # Detect NVSHMEM device library path from python library path if lib_dir is None: py_lib_path = sysconfig.get_path("purelib") lib_dir = py_lib_path + "/nvidia/nvshmem/lib" lib_path = os.path.join(lib_dir, "libnvshmem_device.bc") if not os.path.exists(lib_path): raise RuntimeError("NVSHMEM device library not found") extern_libs = {"libnvshmem_device": lib_path} # A hook function to initialize NVSHMEM in Triton def nvshmem_init_hook(*args, **kwargs) -> None: # type: ignore[no-untyped-def] key = kwargs["key"] device = kwargs["compile"]["device"] jit_function = kwargs["fn"].jit_function kernel_cache, _, _, _ = jit_function.device_caches[device] kernel = kernel_cache.get(key, None) kernel.run _nvshmemx_cumodule_init(kernel.module) # Register the function as a post-compile hook JITFunction.compiled_hook = nvshmem_init_hook # Return to user so that they can use it in Triton kernel invocation return extern_libs if has_triton(): from triton.language import core @core.extern def putmem_block(dst, src, nelems, pe, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_putmem_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def getmem_block(dst, src, nelems, pe, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_getmem_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def putmem_signal_block( # type: ignore[no-untyped-def] dst, src, nelems, sig_addr, signal, sig_op, pe, _builder=None, ): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, sig_addr, signal, sig_op, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_putmem_signal_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def wait_until(ivar, cmp, cmp_val, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [ivar, cmp, cmp_val], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmem_longlong_wait_until", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def signal_wait_until(sig_addr, cmp, cmp_val, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [sig_addr, cmp, cmp_val], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmem_signal_wait_until", core.dtype("int32")) }, is_pure=False, _builder=_builder, )
import os import sysconfig from typing import Optional from torch.utils._triton import has_triton def enable_triton(lib_dir: Optional[str] = None) -> dict[str, str]: """ Enable NVSHMEM device functions for Triton. It performs a NVSHMEM device-side initialization on the kernel module created by Triton. Args: lib_dir (Optional[str]): The directory where the NVSHMEM device library is located. If not provided, it will use the default path where NVSHMEM wheel is installed. Returns: dict[str, str]: A dictionary containing the NVSHMEM device library name and path. """ from triton.runtime.jit import JITFunction from torch._C._distributed_c10d import _nvshmemx_cumodule_init # Detect NVSHMEM device library path from python library path if lib_dir is None: py_lib_path = sysconfig.get_path("purelib") lib_dir = py_lib_path + "/nvidia/nvshmem/lib" lib_path = os.path.join(lib_dir, "libnvshmem_device.bc") if not os.path.exists(lib_path): raise RuntimeError("NVSHMEM device library not found") extern_libs = {"libnvshmem_device": lib_path} # A hook function to initialize NVSHMEM in Triton def nvshmem_init_hook(*args, **kwargs) -> None: # type: ignore[no-untyped-def] key = kwargs["key"] device = kwargs["compile"]["device"] jit_function = kwargs["fn"].jit_function kernel_cache, _, _, _ = jit_function.device_caches[device] kernel = kernel_cache.get(key, None) kernel.run _nvshmemx_cumodule_init(kernel.module) # Register the function as a post-compile hook JITFunction.compiled_hook = nvshmem_init_hook # Return to user so that they can use it in Triton kernel invocation return extern_libs if has_triton(): from triton.language import core @core.extern def putmem_block(dst, src, nelems, pe, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_putmem_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def getmem_block(dst, src, nelems, pe, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_getmem_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def putmem_signal_block( # type: ignore[no-untyped-def] dst, src, nelems, sig_addr, signal, sig_op, pe, _builder=None, ): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [dst, src, nelems, sig_addr, signal, sig_op, pe], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmemx_putmem_signal_block", core.dtype("int32")) }, is_pure=False, _builder=_builder, ) @core.extern def wait_until(ivar, cmp, cmp_val, _builder=None): # type: ignore[no-untyped-def] return core.extern_elementwise( "", "", [ivar, cmp, cmp_val], { ( core.dtype("int64"), core.dtype("int64"), core.dtype("int64"), ): ("nvshmem_longlong_wait_until", core.dtype("int32")) }, is_pure=False, _builder=_builder, )
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import VideoDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = VideoDoc(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(VideoDoc, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(VideoDoc, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(VideoDoc, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDoc): video: VideoDoc video2: VideoDoc video3: VideoDoc doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import VideoDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = VideoDoc(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(VideoDoc, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(VideoDoc, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(VideoDoc, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDoc): video: VideoDoc video2: VideoDoc video3: VideoDoc doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import (AspectRatioBatchSampler, MultiDataAspectRatioBatchSampler, TrackAspectRatioBatchSampler) from .class_aware_sampler import ClassAwareSampler from .multi_data_sampler import MultiDataSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler from .track_img_sampler import TrackImgSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'TrackImgSampler', 'TrackAspectRatioBatchSampler', 'MultiDataSampler', 'MultiDataAspectRatioBatchSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import (AspectRatioBatchSampler, TrackAspectRatioBatchSampler) from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler from .track_img_sampler import TrackImgSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'TrackImgSampler', 'TrackAspectRatioBatchSampler' ]
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[bytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
import json import os from typing import Dict import torch from torch import Tensor, nn class LayerNorm(nn.Module): def __init__(self, dimension: int): super(LayerNorm, self).__init__() self.dimension = dimension self.norm = nn.LayerNorm(dimension) def forward(self, features: Dict[str, Tensor]): features["sentence_embedding"] = self.norm(features["sentence_embedding"]) return features def get_sentence_embedding_dimension(self): return self.dimension def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dimension": self.dimension}, fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = LayerNorm(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
import torch from torch import Tensor from torch import nn from typing import Union, Tuple, List, Iterable, Dict import os import json class LayerNorm(nn.Module): def __init__(self, dimension: int): super(LayerNorm, self).__init__() self.dimension = dimension self.norm = nn.LayerNorm(dimension) def forward(self, features: Dict[str, Tensor]): features['sentence_embedding'] = self.norm(features['sentence_embedding']) return features def get_sentence_embedding_dimension(self): return self.dimension def save(self, output_path): with open(os.path.join(output_path, 'config.json'), 'w') as fOut: json.dump({'dimension': self.dimension}, fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin')) @staticmethod def load(input_path): with open(os.path.join(input_path, 'config.json')) as fIn: config = json.load(fIn) model = LayerNorm(**config) model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu'))) return model
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( f"`factor` should be between 0 and 1. Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.seed = seed self.generator = self.backend.random.SeedGenerator(seed) def get_random_transformation(self, images, training=True, seed=None): if seed is None: seed = self._get_seed_generator(self.backend._backend) # Base case: Unbatched data batch_size = 1 if len(images.shape) == 4: # This is a batch of images (4D input) batch_size = self.backend.core.shape(images)[0] random_values = self.backend.random.uniform( shape=(batch_size,), minval=0, maxval=1, seed=seed, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformation, training=True): if training: should_apply = ( transformation if transformation is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where( should_apply, grayscale_images, images ) return images def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( f"`factor` should be between 0 and 1. Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.seed = seed self.generator = self.backend.random.SeedGenerator(seed) def get_random_transformation(self, images, training=True, seed=None): if seed is None: seed = self._get_seed_generator(self.backend._backend) random_values = self.backend.random.uniform( shape=(self.backend.core.shape(images)[0],), minval=0, maxval=1, seed=seed, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformation, training=True): if training: should_apply = ( transformation if transformation is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where( should_apply, grayscale_images, images ) return images def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilenet_v1 import * from .feature_extraction_mobilenet_v1 import * from .image_processing_mobilenet_v1 import * from .image_processing_mobilenet_v1_fast import * from .modeling_mobilenet_v1 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilenet_v1 import * from .feature_extraction_mobilenet_v1 import * from .image_processing_mobilenet_v1 import * from .modeling_mobilenet_v1 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .data_preprocessors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .language_models import * # noqa: F401,F403 from .layers import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .mot import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .reid import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 from .task_modules import * # noqa: F401,F403 from .test_time_augs import * # noqa: F401,F403 from .trackers import * # noqa: F401,F403 from .tracking_heads import * # noqa: F401,F403 from .vis import * # noqa: F401,F403
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .data_preprocessors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .layers import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .mot import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .reid import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 from .task_modules import * # noqa: F401,F403 from .test_time_augs import * # noqa: F401,F403 from .trackers import * # noqa: F401,F403 from .tracking_heads import * # noqa: F401,F403 from .vis import * # noqa: F401,F403
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: parsed_inputs = [] if inputs.strip(): # Ensure inputs string is not empty input_parts = [part.strip() for part in inputs.split(",")] for part in input_parts: try: # Try to parse as a JSON literal (e.g., number, bool) parsed_inputs.append(json.loads(part)) except json.JSONDecodeError: # If it fails, treat it as a bare string/placeholder parsed_inputs.append(part) graph.add_node(output, func_name=func_name, inputs=parsed_inputs) for inp in parsed_inputs: # Add an edge only if the input is a placeholder from a previous step if isinstance(inp, str) and inp in placeholders: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: tool_output = await tools_by_name[func_name].acall(*input_values) tool_outputs.append(tool_output) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = tool_output.raw_output results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: inputs = json.loads("[" + inputs + "]") graph.add_node(output, func_name=func_name, inputs=inputs) for inp in inputs: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions breakpoint() input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: tool_output = await tools_by_name[func_name].acall(*input_values) tool_outputs.append(tool_output) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = tool_output.raw_output results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
from typing import Callable, Dict, Generic, List, Optional, Type, TypeVar from torch.utils.data import Dataset from docarray import BaseDoc, DocList, DocVec from docarray.typing import TorchTensor from docarray.utils._internal._typing import change_cls_name T_doc = TypeVar('T_doc', bound=BaseDoc) class MultiModalDataset(Dataset, Generic[T_doc]): """ A dataset that can be used inside a PyTorch DataLoader. In other words, it implements the PyTorch Dataset interface. The preprocessing dictionary passed to the constructor consists of keys that are field names and values that are functions that take a single argument and return a single argument. --- ```python from torch.utils.data import DataLoader from docarray import DocList from docarray.data import MultiModalDataset from docarray.documents import TextDoc def prepend_number(text: str): return f"Number {text}" docs = DocList[TextDoc](TextDoc(text=str(i)) for i in range(16)) ds = MultiModalDataset[TextDoc](docs, preprocessing={'text': prepend_number}) loader = DataLoader(ds, batch_size=4, collate_fn=MultiModalDataset[TextDoc].collate_fn) for batch in loader: print(batch.text) ``` --- Nested fields can be accessed by using dot notation. The document itself can be accessed using the empty string as the key. Transformations that operate on reference types (such as Documents) can optionally not return a value. The transformations will be applied according to their order in the dictionary. --- ```python import torch from torch.utils.data import DataLoader from docarray import DocList, BaseDoc from docarray.data import MultiModalDataset from docarray.documents import TextDoc class Thesis(BaseDoc): title: TextDoc class Student(BaseDoc): thesis: Thesis def embed_title(title: TextDoc): title.embedding = torch.ones(4) def normalize_embedding(thesis: Thesis): thesis.title.embedding = thesis.title.embedding / thesis.title.embedding.norm() def add_nonsense(student: Student): student.thesis.title.embedding = student.thesis.title.embedding + int( student.thesis.title.text ) docs = DocList[Student](Student(thesis=Thesis(title=str(i))) for i in range(16)) ds = MultiModalDataset[Student]( docs, preprocessing={ "thesis.title": embed_title, "thesis": normalize_embedding, "": add_nonsense, }, ) loader = DataLoader(ds, batch_size=4, collate_fn=ds.collate_fn) for batch in loader: print(batch.thesis.title.embedding) ``` --- :param docs: the `DocList` to be used as the dataset :param preprocessing: a dictionary of field names and preprocessing functions """ doc_type: Optional[Type[BaseDoc]] = None __typed_ds__: Dict[Type[BaseDoc], Type['MultiModalDataset']] = {} def __init__( self, docs: 'DocList[T_doc]', preprocessing: Dict[str, Callable] ) -> None: self.docs = docs self._preprocessing = preprocessing def __len__(self): return len(self.docs) def __getitem__(self, item: int): doc = self.docs[item].copy(deep=True) for field, preprocess in self._preprocessing.items(): if len(field) == 0: doc = preprocess(doc) or doc else: acc_path = field.split('.') _field_ref = doc for attr in acc_path[:-1]: _field_ref = getattr(_field_ref, attr) attr = acc_path[-1] value = getattr(_field_ref, attr) setattr(_field_ref, attr, preprocess(value) or value) return doc @classmethod def collate_fn(cls, batch: List[T_doc]): doc_type = cls.doc_type if doc_type: batch_da = DocVec[doc_type]( # type: ignore batch, tensor_type=TorchTensor, ) else: batch_da = DocVec(batch, tensor_type=TorchTensor) return batch_da @classmethod def __class_getitem__(cls, item: Type[BaseDoc]) -> Type['MultiModalDataset']: if not issubclass(item, BaseDoc): raise ValueError( f'{cls.__name__}[item] item should be a Document not a {item} ' ) if item not in cls.__typed_ds__: global _TypedDataset class _TypedDataset(cls): # type: ignore doc_type = item change_cls_name( _TypedDataset, f'{cls.__name__}[{item.__name__}]', globals() ) cls.__typed_ds__[item] = _TypedDataset return cls.__typed_ds__[item]
from typing import Callable, Dict, Generic, List, Optional, Type, TypeVar from torch.utils.data import Dataset from docarray import BaseDoc, DocList, DocVec from docarray.typing import TorchTensor from docarray.utils._internal._typing import change_cls_name T_doc = TypeVar('T_doc', bound=BaseDoc) class MultiModalDataset(Dataset, Generic[T_doc]): """ A dataset that can be used inside a PyTorch DataLoader. In other words, it implements the PyTorch Dataset interface. :param docs: the DocList to be used as the dataset :param preprocessing: a dictionary of field names and preprocessing functions The preprocessing dictionary passed to the constructor consists of keys that are field names and values that are functions that take a single argument and return a single argument. EXAMPLE USAGE .. code-block:: python from torch.utils.data import DataLoader from docarray import DocList from docarray.data import MultiModalDataset from docarray.documents import Text def prepend_number(text: str): return f"Number {text}" docs = DocList[Text](Text(text=str(i)) for i in range(16)) ds = MultiModalDataset[Text](docs, preprocessing={'text': prepend_number}) loader = DataLoader(ds, batch_size=4, collate_fn=MultiModalDataset[Text].collate_fn) for batch in loader: print(batch.text) Nested fields can be accessed by using dot notation. The document itself can be accessed using the empty string as the key. Transformations that operate on reference types (such as Documents) can optionally not return a value. The transformations will be applied according to their order in the dictionary. EXAMPLE USAGE .. code-block:: python import torch from torch.utils.data import DataLoader from docarray import DocList, BaseDoc from docarray.data import MultiModalDataset from docarray.documents import Text class Thesis(BaseDoc): title: Text class Student(BaseDoc): thesis: Thesis def embed_title(title: Text): title.embedding = torch.ones(4) def normalize_embedding(thesis: Thesis): thesis.title.embedding = thesis.title.embedding / thesis.title.embedding.norm() def add_nonsense(student: Student): student.thesis.title.embedding = student.thesis.title.embedding + int( student.thesis.title.text ) docs = DocList[Student](Student(thesis=Thesis(title=str(i))) for i in range(16)) ds = MultiModalDataset[Student]( docs, preprocessing={ "thesis.title": embed_title, "thesis": normalize_embedding, "": add_nonsense, }, ) loader = DataLoader(ds, batch_size=4, collate_fn=ds.collate_fn) for batch in loader: print(batch.thesis.title.embedding) """ doc_type: Optional[Type[BaseDoc]] = None __typed_ds__: Dict[Type[BaseDoc], Type['MultiModalDataset']] = {} def __init__( self, docs: 'DocList[T_doc]', preprocessing: Dict[str, Callable] ) -> None: self.docs = docs self._preprocessing = preprocessing def __len__(self): return len(self.docs) def __getitem__(self, item: int): doc = self.docs[item].copy(deep=True) for field, preprocess in self._preprocessing.items(): if len(field) == 0: doc = preprocess(doc) or doc else: acc_path = field.split('.') _field_ref = doc for attr in acc_path[:-1]: _field_ref = getattr(_field_ref, attr) attr = acc_path[-1] value = getattr(_field_ref, attr) setattr(_field_ref, attr, preprocess(value) or value) return doc @classmethod def collate_fn(cls, batch: List[T_doc]): doc_type = cls.doc_type if doc_type: batch_da = DocVec[doc_type]( # type: ignore batch, tensor_type=TorchTensor, ) else: batch_da = DocVec(batch, tensor_type=TorchTensor) return batch_da @classmethod def __class_getitem__(cls, item: Type[BaseDoc]) -> Type['MultiModalDataset']: if not issubclass(item, BaseDoc): raise ValueError( f'{cls.__name__}[item] item should be a Document not a {item} ' ) if item not in cls.__typed_ds__: global _TypedDataset class _TypedDataset(cls): # type: ignore doc_type = item change_cls_name( _TypedDataset, f'{cls.__name__}[{item.__name__}]', globals() ) cls.__typed_ds__[item] = _TypedDataset return cls.__typed_ds__[item]
"""Defines utilities for switching audio backends""" import warnings from typing import List, Optional import torchaudio from torchaudio._internal import module_utils as _mod_utils from . import no_backend, soundfile_backend, sox_io_backend __all__ = [ "list_audio_backends", "get_audio_backend", "set_audio_backend", ] def list_audio_backends() -> List[str]: """List available backends Returns: List[str]: The list of available backends. """ backends = [] if _mod_utils.is_module_available("soundfile"): backends.append("soundfile") if torchaudio._extension._SOX_INITIALIZED: backends.append("sox_io") return backends def set_audio_backend(backend: Optional[str]): """Set the backend for I/O operation Args: backend (str or None): Name of the backend. One of ``"sox_io"`` or ``"soundfile"`` based on availability of the system. If ``None`` is provided the current backend is unassigned. """ if backend is not None and backend not in list_audio_backends(): raise RuntimeError(f'Backend "{backend}" is not one of ' f"available backends: {list_audio_backends()}.") if backend is None: module = no_backend elif backend == "sox_io": module = sox_io_backend elif backend == "soundfile": module = soundfile_backend else: raise NotImplementedError(f'Unexpected backend "{backend}"') for func in ["save", "load", "info"]: setattr(torchaudio, func, getattr(module, func)) def _init_backend(): backends = list_audio_backends() if "sox_io" in backends: set_audio_backend("sox_io") elif "soundfile" in backends: set_audio_backend("soundfile") else: warnings.warn("No audio backend is available.") set_audio_backend(None) def get_audio_backend() -> Optional[str]: """Get the name of the current backend Returns: Optional[str]: The name of the current backend or ``None`` if no backend is assigned. """ if torchaudio.load == no_backend.load: return None if torchaudio.load == sox_io_backend.load: return "sox_io" if torchaudio.load == soundfile_backend.load: return "soundfile" raise ValueError("Unknown backend.")
"""Defines utilities for switching audio backends""" import os import warnings from typing import List, Optional import torchaudio from torchaudio._internal import module_utils as _mod_utils from . import no_backend, soundfile_backend, sox_io_backend __all__ = [ "list_audio_backends", "get_audio_backend", "set_audio_backend", ] def _is_backend_dispatcher_enabled() -> bool: return os.getenv("TORCHAUDIO_USE_BACKEND_DISPATCHER", default="1") == "1" def list_audio_backends() -> List[str]: """List available backends Returns: List[str]: The list of available backends. """ if _is_backend_dispatcher_enabled(): warnings.warn("list_audio_backend's return value is irrelevant when the I/O backend dispatcher is enabled.") backends = [] if _mod_utils.is_module_available("soundfile"): backends.append("soundfile") if torchaudio._extension._SOX_INITIALIZED: backends.append("sox_io") return backends def set_audio_backend(backend: Optional[str]): """Set the backend for I/O operation Args: backend (str or None): Name of the backend. One of ``"sox_io"`` or ``"soundfile"`` based on availability of the system. If ``None`` is provided the current backend is unassigned. """ if _is_backend_dispatcher_enabled(): warnings.warn("set_audio_backend is a no-op when the I/O backend dispatcher is enabled.") return if backend is not None and backend not in list_audio_backends(): raise RuntimeError(f'Backend "{backend}" is not one of ' f"available backends: {list_audio_backends()}.") if backend is None: module = no_backend elif backend == "sox_io": module = sox_io_backend elif backend == "soundfile": module = soundfile_backend else: raise NotImplementedError(f'Unexpected backend "{backend}"') for func in ["save", "load", "info"]: setattr(torchaudio, func, getattr(module, func)) def _init_audio_backend(): backends = list_audio_backends() if "sox_io" in backends: set_audio_backend("sox_io") elif "soundfile" in backends: set_audio_backend("soundfile") else: warnings.warn("No audio backend is available.") set_audio_backend(None) def get_audio_backend() -> Optional[str]: """Get the name of the current backend Returns: Optional[str]: The name of the current backend or ``None`` if no backend is assigned. """ if _is_backend_dispatcher_enabled(): warnings.warn("get_audio_backend's return value is irrelevant when the I/O backend dispatcher is enabled.") if torchaudio.load == no_backend.load: return None if torchaudio.load == sox_io_backend.load: return "sox_io" if torchaudio.load == soundfile_backend.load: return "soundfile" raise ValueError("Unknown backend.")
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from docarray import Document, DocumentArray import pytest @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize('deleted_elmnts', [[0, 1], ['r0', 'r1']]) def test_delete_offset_success_sync_es_offset_index(deleted_elmnts, start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_delete_offset_success_sync_es_offset_index', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[5, 5, 5]), Document(id='r6', embedding=[6, 6, 6]), Document(id='r7', embedding=[7, 7, 7]), ] ) expected_offset_after_del = ['r2', 'r3', 'r4', 'r5', 'r6', 'r7'] with elastic_doc: del elastic_doc[deleted_elmnts] indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc._offset2ids.ids) == indexed_offset_count assert len(elastic_doc._offset2ids.ids) == 6 assert len(elastic_doc[:, 'embedding']) == 6 for id in expected_offset_after_del: expected_offset = str(expected_offset_after_del.index(id)) actual_offset_index = elastic_doc._client.search( index=elastic_doc._index_name_offset2id, query={'match': {'blob': id}} )['hits']['hits'][0]['_id'] assert actual_offset_index == expected_offset @pytest.mark.filterwarnings('ignore::UserWarning') def test_success_handle_bulk_delete_not_found(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_bulk_delete_not_found', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), ] ) offset_index = elastic_doc._index_name_offset2id expected_to_be_fail_del_data = [ { '_op_type': 'delete', '_id': 0, # offset data exist '_index': offset_index, }, { '_op_type': 'delete', '_id': 2, # offset data not exist, expect to fail '_index': offset_index, }, ] info = elastic_doc._send_requests(expected_to_be_fail_del_data) assert len(info) == 1 assert 'delete' in info[0].keys()
from docarray import Document, DocumentArray import pytest @pytest.mark.parametrize('deleted_elmnts', [[0, 1], ['r0', 'r1']]) def test_delete_offset_success_sync_es_offset_index(deleted_elmnts, start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_delete_offset_success_sync_es_offset_index', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[5, 5, 5]), Document(id='r6', embedding=[6, 6, 6]), Document(id='r7', embedding=[7, 7, 7]), ] ) expected_offset_after_del = ['r2', 'r3', 'r4', 'r5', 'r6', 'r7'] with elastic_doc: del elastic_doc[deleted_elmnts] indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc._offset2ids.ids) == indexed_offset_count assert len(elastic_doc._offset2ids.ids) == 6 assert len(elastic_doc[:, 'embedding']) == 6 for id in expected_offset_after_del: expected_offset = str(expected_offset_after_del.index(id)) actual_offset_index = elastic_doc._client.search( index=elastic_doc._index_name_offset2id, query={'match': {'blob': id}} )['hits']['hits'][0]['_id'] assert actual_offset_index == expected_offset
"""Tool for the Wolfram Alpha API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.wolfram_alpha import WolframAlphaAPIWrapper class WolframAlphaQueryRun(BaseTool): """Tool that queries using the Wolfram Alpha SDK.""" name: str = "wolfram_alpha" description: str = ( "A wrapper around Wolfram Alpha. " "Useful for when you need to answer questions about Math, " "Science, Technology, Culture, Society and Everyday Life. " "Input should be a search query." ) api_wrapper: WolframAlphaAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the WolframAlpha tool.""" return self.api_wrapper.run(query)
"""Tool for the Wolfram Alpha API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.wolfram_alpha import WolframAlphaAPIWrapper class WolframAlphaQueryRun(BaseTool): # type: ignore[override] """Tool that queries using the Wolfram Alpha SDK.""" name: str = "wolfram_alpha" description: str = ( "A wrapper around Wolfram Alpha. " "Useful for when you need to answer questions about Math, " "Science, Technology, Culture, Society and Everyday Life. " "Input should be a search query." ) api_wrapper: WolframAlphaAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the WolframAlpha tool.""" return self.api_wrapper.run(query)
import contextlib import os import shutil import time from jina import DocumentArray, Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.py') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(2.0) def test_reload_simple_executor(tmpdir): from tests.integration.hot_reload.exec1.my_executor1 import MyExecutorToReload1 f = Flow().add(uses=MyExecutorToReload1, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_1_new.py'), os.path.join(cur_dir, 'exec1/my_executor1.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_with_dynamic_batching(tmpdir): from tests.integration.hot_reload.exec1.my_executor1 import MyExecutorToReload1 f = Flow().add( uses=MyExecutorToReload1, reload=True, uses_dynamic_batching={'/bar': {'preferred_batch_size': 1, 'timeout': 1000}}, ) with f: res = f.post(on='/bar', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReloadBar' with _update_file( os.path.join(cur_dir, 'my_executor_1_new.py'), os.path.join(cur_dir, 'exec1/my_executor1.py'), str(tmpdir), ): res = f.post(on='/bar', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReloadBar' res = f.post(on='/bar', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReloadBar' def test_reload_helper(tmpdir): from tests.integration.hot_reload.exec2.my_executor2 import MyExecutorToReload2 f = Flow().add(uses=MyExecutorToReload2, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'helper2.py'), os.path.join(cur_dir, 'exec2/helper.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_with_inheritance(tmpdir): from tests.integration.hot_reload.exec3.my_executor3 import A, EnhancedExecutor f = Flow().add(uses=A, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_3_new.py'), os.path.join(cur_dir, 'exec3/my_executor3.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'AAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload'
import contextlib import os import shutil import time from jina import DocumentArray, Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.py') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(2.0) def test_reload_simple_executor(tmpdir): from tests.integration.hot_reload.exec1.my_executor1 import MyExecutorToReload1 f = Flow().add(uses=MyExecutorToReload1, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_1_new.py'), os.path.join(cur_dir, 'exec1/my_executor1.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_helper(tmpdir): from tests.integration.hot_reload.exec2.my_executor2 import MyExecutorToReload2 f = Flow().add(uses=MyExecutorToReload2, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'helper2.py'), os.path.join(cur_dir, 'exec2/helper.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_with_inheritance(tmpdir): from tests.integration.hot_reload.exec3.my_executor3 import A, EnhancedExecutor f = Flow().add(uses=A, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_3_new.py'), os.path.join(cur_dir, 'exec3/my_executor3.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'AAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload'
# Copyright (c) OpenMMLab. All rights reserved. from contextlib import contextmanager import torch from mmengine.utils import TORCH_VERSION, digit_version @contextmanager def autocast(enabled: bool = True, **kwargs): """A wrapper of ``torch.autocast`` and ``toch.cuda.amp.autocast``. Pytorch 1.6.0 provide ``torch.cuda.amp.autocast`` for running in mixed precision , and update it to ``torch.autocast`` in 1.10.0. Both interfaces have different arguments, and ``torch.autocast`` support running with cpu additionally. This function provides a unified interface by wrapping ``torch.autocast`` and ``torch.cuda.amp.autocast``, which resolves the compatibility issues that ``torch.cuda.amp.autocast`` does not support running mixed precision with cpu, and both contexts have different arguments. We suggest users using this function in the code to achieve maximized compatibility of different PyTorch versions. Note: ``autocast`` requires pytorch version >= 1.5.0. If pytorch version <= 1.10.0 and cuda is not available, it will raise an error with ``enabled=True``, since ``torch.cuda.amp.autocast`` only support cuda mode. Examples: >>> # case1: 1.10 > Pytorch version >= 1.5.0 >>> with autocast(): >>> # run in mixed precision context >>> pass >>> with autocast(device_type='cpu'):: >>> # raise error, torch.cuda.amp.autocast only support cuda mode. >>> pass >>> # case2: Pytorch version >= 1.10.0 >>> with autocast(): >>> # default cuda mixed precision context >>> pass >>> with autocast(device_type='cpu'): >>> # cpu mixed precision context >>> pass >>> with autocast( >>> device_type='cuda', enabled=True, cache_enabled=True): >>> # enable precision context with more specific arguments. >>> pass Args: enabled (bool): Whether autocasting should be enabled in the region. Defaults to True. kwargs (dict): Arguments of torch.autocast except for ``enabled``. """ # If `enabled` is True, enable an empty context and all calculations # are performed under fp32. assert digit_version(TORCH_VERSION) >= digit_version('1.5.0'), ( 'The minimum pytorch version requirements of mmengine is 1.5.0, but ' f'got {TORCH_VERSION}') if (digit_version('1.5.0') <= digit_version(TORCH_VERSION) < digit_version('1.10.0')): # If pytorch version is between 1.5.0 and 1.10.0, the default value of # dtype for `torch.cuda.amp.autocast` is torch.float16. assert not kwargs, ( f'autocast under pytorch {TORCH_VERSION} only accept `enabled` ' 'arguments.') if torch.cuda.is_available(): with torch.cuda.amp.autocast(enabled=enabled): yield else: if not enabled: yield else: raise RuntimeError( 'If pytorch versions is between 1.5.0 and 1.10, ' '`autocast` is only available in gpu mode') elif (digit_version('1.11.0') > digit_version(TORCH_VERSION) >= digit_version('1.10.0')): if torch.cuda.is_available(): kwargs.setdefault('device_type', 'cuda') else: kwargs.setdefault('device_type', 'cpu') # torch.autocast only support `dtype=torch.bfloat16` in # pytorch 1.10 kwargs.setdefault('dtype', torch.bfloat16) with torch.autocast(enabled=enabled, **kwargs): yield elif digit_version(TORCH_VERSION) >= digit_version('1.11.0'): if torch.cuda.is_available(): kwargs.setdefault('device_type', 'cuda') else: kwargs.setdefault('device_type', 'cpu') with torch.autocast(enabled=enabled, **kwargs): yield
# Copyright (c) OpenMMLab. All rights reserved. from contextlib import contextmanager import torch from mmengine.utils import TORCH_VERSION, digit_version @contextmanager def autocast(enabled: bool = True, **kwargs): """A wrapper of ``torch.autocast`` and ``toch.cuda.amp.autocast``. Pytorch 1.6.0 provide ``torch.cuda.amp.autocast`` for running in mixed precision , and update it to ``torch.autocast`` in 1.10.0. Both interfaces have different arguments, and ``torch.autocast`` support running with cpu additionally. This function provides a unified interface by wrapping ``torch.autocast`` and ``torch.cuda.amp.autocast``, which resolves the compatibility issues that ``torch.cuda.amp.autocast`` does not support running mixed precision with cpu, and both contexts have different arguments. We suggest users using this function in the code to achieve maximized compatibility of different PyTorch versions. Note: ``autocast`` requires pytorch version >= 1.5.0. If pytorch version <= 1.10.0 and cuda is not available, it will raise an error with ``enabled=True``, since ``torch.cuda.amp.autocast`` only support cuda mode. Examples: >>> # case1: 1.10 > Pytorch version >= 1.5.0 >>> with autocast(): >>> # run in mixed precision context >>> pass >>> with autocast(device_type='cpu'):: >>> # raise error, torch.cuda.amp.autocast only support cuda mode. >>> pass >>> # case2: Pytorch version >= 1.10.0 >>> with autocast(): >>> # default cuda mixed precision context >>> pass >>> with autocast(device_type='cpu'): >>> # cpu mixed precision context >>> pass >>> with autocast( >>> device_type='cuda', enabled=True, cache_enabled=True): >>> # enable precision context with more specific arguments. >>> pass Args: enabled (bool): Whether autocasting should be enabled in the region. Defaults to True. kwargs (dict): Arguments of torch.autocast except for ``enabled``. """ # If `enabled` is True, enable an empty context and all calculations # are performed under fp32. assert digit_version(TORCH_VERSION) >= digit_version('1.5.0'), ( 'The minimum pytorch version requirements of mmengine is 1.5.0, but ' f'got {TORCH_VERSION}') if (digit_version('1.5.0') <= digit_version(TORCH_VERSION) < digit_version('1.10.0')): # If pytorch version is between 1.5.0 and 1.10.0, the default value of # dtype for `torch.cuda.amp.autocast` is torch.float16. assert not kwargs, ( f'autocast under pytorch {TORCH_VERSION} only accept `enabled` ' 'arguments.') if torch.cuda.is_available(): with torch.cuda.amp.autocast(enabled=enabled): yield else: if not enabled: yield else: raise RuntimeError( 'If pytorch versions is between 1.5.0 and 1.10, ' '`autocast` is only available in gpu mode') elif digit_version(TORCH_VERSION) >= digit_version('1.10.0'): if torch.cuda.is_available(): kwargs.setdefault('device_type', 'cuda') else: kwargs.setdefault('device_type', 'cpu') with torch.autocast(enabled=enabled, **kwargs): yield
from llama_index.tools.mcp.base import McpToolSpec from llama_index.tools.mcp.client import BasicMCPClient from llama_index.tools.mcp.utils import workflow_as_mcp, get_tools_from_mcp_url, aget_tools_from_mcp_url __all__ = [ "McpToolSpec", "BasicMCPClient", "workflow_as_mcp", "get_tools_from_mcp_url", "aget_tools_from_mcp_url" ]
from llama_index.tools.mcp.base import McpToolSpec from llama_index.tools.mcp.client import BasicMCPClient __all__ = ["McpToolSpec", "BasicMCPClient"]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='PanopticFPN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, pad_mask=True, mask_pad_value=0, pad_seg=True, seg_pad_value=255), semantic_head=dict( type='PanopticFPNHead', num_things_classes=80, num_stuff_classes=53, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), test_cfg=dict( rcnn=dict( score_thr=0.6, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), max_per_img=100, mask_thr_binary=0.5), # used in HeuristicFusionHead panoptic=dict(mask_overlap=0.5, stuff_area_limit=4096))) # Forced to remove NumClassCheckHook custom_hooks = []
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='PanopticFPN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, pad_mask=True, mask_pad_value=0, pad_seg=True, seg_pad_value=255), semantic_head=dict( type='PanopticFPNHead', num_things_classes=80, num_stuff_classes=53, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), test_cfg=dict( rcnn=dict( score_thr=0.6, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), max_per_img=100, mask_thr_binary=0.5), # used in HeuristicFusionHead panoptic=dict(mask_overlap=0.5, stuff_area_limit=4096))) # Forced to remove NumClassCheckHook custom_hooks = []
import pathlib from typing import Any, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> list[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: tuple[str, Any]) -> dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> list[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm from xgboost.testing.ranking import run_normalization pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "gpu_hist", "gpu_id": 0, } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "gpu_id": -1, } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(os.path.join(os.path.join(tm.demo_dir(__file__), "rank"))) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric) def test_normalization() -> None: run_normalization("cuda")
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "gpu_hist", "gpu_id": 0, } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "gpu_id": -1, } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(os.path.join(os.path.join(tm.demo_dir(__file__), "rank"))) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric)
from __future__ import annotations import csv import logging import os from scipy.stats import pearsonr, spearmanr from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: list[list[str]], scores: list[float], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
import csv import logging import os from typing import List from scipy.stats import pearsonr, spearmanr from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: List[List[str]], scores: List[float], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor T = TypeVar('T', bound='Image') try: import torch torch_available = True except ImportError: torch_available = False class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
from typing import Optional from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, ImageUrl class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
"""Test CodeHierarchyNodeParser reading itself.""" from typing import Sequence import pytest from llama_index.core import SimpleDirectoryReader from pytest import fixture from llama_index.packs.code_hierarchy import CodeHierarchyNodeParser from llama_index.core.text_splitter import CodeSplitter from pathlib import Path from llama_index.core.schema import BaseNode import re from llama_index.packs.code_hierarchy import CodeHierarchyKeywordQueryEngine def print_python(python_text: str) -> None: """This function prints python text in ipynb nicely formatted.""" print("```python\n" + python_text + "```") @fixture(params=[(80, 1000, 10), (500, 5000, 100)]) def code_hierarchy_nodes(request) -> Sequence[BaseNode]: reader = SimpleDirectoryReader( input_files=[ Path(__file__).parent / Path("../llama_index/packs/code_hierarchy/code_hierarchy.py") ], file_metadata=lambda x: {"filepath": x}, ) nodes = reader.load_data() return CodeHierarchyNodeParser( language="python", chunk_min_characters=request.param[0], # You can further parameterize the CodeSplitter to split the code # into "chunks" that match your context window size using # chunck_lines and max_chars parameters, here we just use the defaults code_splitter=CodeSplitter( language="python", max_chars=request.param[1], chunk_lines=request.param[2] ), ).get_nodes_from_documents(nodes) def test_code_splitter_NEXT_relationship_indention( code_hierarchy_nodes: Sequence[BaseNode], ) -> None: """When using jupyter I found that the final brevity comment was indented when it shouldn't be.""" for node in code_hierarchy_nodes: last_line = node.text.split("\n")[-1] if "Code replaced for brevity" in last_line and "NEXT" in node.relationships: assert not last_line.startswith(" ") assert not last_line.startswith("\t") def test_query_by_module_name(code_hierarchy_nodes: Sequence[BaseNode]) -> None: """Test querying the index by filename.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) query = "code_hierarchy" results = index.query(query) assert len(results.response) >= 1 and results.response != "None" @pytest.mark.parametrize( "name", [ "CodeHierarchyNodeParser", "_parse_node", "recur", "__init__", ], ) def test_query_by_item_name( name: str, code_hierarchy_nodes: Sequence[BaseNode] ) -> None: """Test querying the index by signature.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) query = "CodeHierarchyNodeParser" results = index.query(query) assert len(results.response) >= 1 and results.response != "None" def test_query_by_all_uuids(code_hierarchy_nodes: Sequence[BaseNode]) -> None: """Test querying the index by signature.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) for node in code_hierarchy_nodes: # Find all uuids in the node uuids = re.findall(r"[\w-]{36}", node.text) for uuid in uuids: results = index.query(uuid) assert len(results.response) >= 1 and results.response != "None"
"""Test CodeHierarchyNodeParser reading itself.""" from typing import Sequence import pytest from llama_index.core import SimpleDirectoryReader from pytest import fixture from llama_index.packs.code_hierarchy import CodeHierarchyNodeParser from llama_index.core.text_splitter import CodeSplitter from pathlib import Path from llama_index.core.schema import BaseNode import re from llama_index.packs.code_hierarchy import CodeHierarchyKeywordQueryEngine def print_python(python_text: str) -> None: """This function prints python text in ipynb nicely formatted.""" print("```python\n" + python_text + "```") @fixture(params=[(80, 1000, 10), (500, 5000, 100)]) def code_hierarchy_nodes(request) -> Sequence[BaseNode]: reader = SimpleDirectoryReader( input_files=[ Path(__file__).parent / Path("../llama_index/packs/code_hierarchy/code_hierarchy.py") ], file_metadata=lambda x: {"filepath": x}, ) nodes = reader.load_data() return CodeHierarchyNodeParser( language="python", chunk_min_characters=request.param[0], # You can further parameterize the CodeSplitter to split the code # into "chunks" that match your context window size using # chunck_lines and max_chars parameters, here we just use the defaults code_splitter=CodeSplitter( language="python", max_chars=request.param[1], chunk_lines=request.param[2] ), ).get_nodes_from_documents(nodes) def test_code_splitter_NEXT_relationship_indention( code_hierarchy_nodes: Sequence[BaseNode], ) -> None: """When using jupyter I found that the final brevity comment was indented when it shouldn't be.""" for node in code_hierarchy_nodes: last_line = node.text.split("\n")[-1] if "Code replaced for brevity" in last_line and "NEXT" in node.relationships: assert not last_line.startswith(" ") assert not last_line.startswith("\t") def test_query_by_module_name(code_hierarchy_nodes: Sequence[BaseNode]) -> None: """Test querying the index by filename.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) query = "code_hierarchy" results = index.query(query) assert len(results.response) >= 1 and results.response != "None" @pytest.mark.parametrize( "name", [ "CodeHierarchyNodeParser", "_parse_node", "recur", "__init__", ], ) def test_query_by_item_name( name: str, code_hierarchy_nodes: Sequence[BaseNode] ) -> None: """Test querying the index by signature.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) query = "CodeHierarchyNodeParser" results = index.query(query) assert len(results.response) >= 1 and results.response != "None" def test_query_by_all_uuids(code_hierarchy_nodes: Sequence[BaseNode]) -> None: """Test querying the index by signature.""" index = CodeHierarchyKeywordQueryEngine(nodes=code_hierarchy_nodes) for node in code_hierarchy_nodes: # Find all uuids in the node uuids = re.findall(r"[\w-]{36}", node.text) for uuid in uuids: results = index.query(uuid) assert len(results.response) >= 1 and results.response != "None"
import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray, TorchTensor class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_from_to_bytes(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['protobuf'] # ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4']) # , 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False]) # [False, True]) @pytest.mark.parametrize('array_cls', [DocVec]) # [DocList, DocVec]) def test_from_to_base64(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None # test_from_to_base64('protobuf', 'lz4', False, DocVec) @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) @pytest.mark.parametrize('protocol', ['protobuf-array', 'pickle-array']) def test_from_to_base64_tensor_type(tensor_type, protocol): class MyDoc(BaseDoc): embedding: tensor_type text: str image: ImageDoc da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) bytes_da = da.to_base64(protocol=protocol) da2 = DocVec[MyDoc].from_base64( bytes_da, tensor_type=tensor_type, protocol=protocol ) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type) @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) def test_from_to_bytes_tensor_type(tensor_type): da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) bytes_da = da.to_bytes() da2 = DocVec[MyDoc].from_bytes(bytes_da, tensor_type=tensor_type) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type) def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.from_bytes(docs.to_bytes()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_bytes(docs_basic.to_bytes()) assert docs_copy == docs_basic
import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray, TorchTensor class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_from_to_bytes(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_from_to_base64(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) @pytest.mark.parametrize('protocol', ['protobuf-array', 'pickle-array']) def test_from_to_base64_tensor_type(tensor_type, protocol): class MyDoc(BaseDoc): embedding: tensor_type text: str image: ImageDoc da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) bytes_da = da.to_base64(protocol=protocol) da2 = DocVec[MyDoc].from_base64( bytes_da, tensor_type=tensor_type, protocol=protocol ) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type) @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) def test_from_to_bytes_tensor_type(tensor_type): da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) bytes_da = da.to_bytes() da2 = DocVec[MyDoc].from_bytes(bytes_da, tensor_type=tensor_type) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type) def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.from_bytes(docs.to_bytes()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_bytes(docs_basic.to_bytes()) assert docs_copy == docs_basic
from .sentence_encoder import TransformerSentenceEncoder
from .sentence_encoder import TransformerSentenceEncoder
import numpy as np from keras.src import backend from keras.src import constraints from keras.src import testing def get_example_array(): np.random.seed(3537) example_array = np.random.random((100, 100)) * 100.0 - 50.0 example_array[0, 0] = 0.0 # Possible edge case return example_array class ConstraintsTest(testing.TestCase): def test_max_norm(self): constraint_fn = constraints.MaxNorm(2.0) x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T target = np.array( [ [0, 0, 0], [1.0, 0, 0], [2.0, 0, 0], [2.0 / np.sqrt(3), 2.0 / np.sqrt(3), 2.0 / np.sqrt(3)], ] ).T output = constraint_fn(x) self.assertAllClose(target, output) def test_non_neg(self): constraint_fn = constraints.NonNeg() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) self.assertTrue((np.min(output, axis=1) >= 0.0).all()) def test_unit_norm(self): constraint_fn = constraints.UnitNorm() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertAllClose(l2, 1.0) def test_min_max_norm(self): constraint_fn = constraints.MinMaxNorm(min_value=0.2, max_value=0.5) output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertTrue(np.all(l2 >= 0.2)) self.assertTrue(np.all(l2 <= 0.5 + 1e-6)) def test_get_method(self): obj = constraints.get("unit_norm") self.assertTrue(obj, constraints.UnitNorm) obj = constraints.get(None) self.assertEqual(obj, None) with self.assertRaises(ValueError): constraints.get("typo") def test_default_constraint_call(self): constraint_fn = constraints.Constraint() x = np.array([1.0, 2.0, 3.0]) output = constraint_fn(x) self.assertAllClose(x, output) def test_constraint_get_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() self.assertEqual(config, {}) def test_constraint_from_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() recreated_constraint_fn = constraints.Constraint.from_config(config) self.assertIsInstance(recreated_constraint_fn, constraints.Constraint) def test_max_norm_get_config(self): constraint_fn = constraints.MaxNorm(max_value=3.0, axis=1) config = constraint_fn.get_config() expected_config = {"max_value": 3.0, "axis": 1} self.assertEqual(config, expected_config) def test_unit_norm_get_config(self): constraint_fn = constraints.UnitNorm(axis=1) config = constraint_fn.get_config() expected_config = {"axis": 1} self.assertEqual(config, expected_config) def test_min_max_norm_get_config(self): constraint_fn = constraints.MinMaxNorm( min_value=0.5, max_value=2.0, rate=0.7, axis=1 ) config = constraint_fn.get_config() expected_config = { "min_value": 0.5, "max_value": 2.0, "rate": 0.7, "axis": 1, } self.assertEqual(config, expected_config)
import numpy as np from keras.src import backend from keras.src import constraints from keras.src import testing def get_example_array(): np.random.seed(3537) example_array = np.random.random((100, 100)) * 100.0 - 50.0 example_array[0, 0] = 0.0 # Possible edge case return example_array class ConstraintsTest(testing.TestCase): def test_max_norm(self): constraint_fn = constraints.MaxNorm(2.0) x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T target = np.array( [ [0, 0, 0], [1.0, 0, 0], [2.0, 0, 0], [2.0 / np.sqrt(3), 2.0 / np.sqrt(3), 2.0 / np.sqrt(3)], ] ).T output = constraint_fn(x) self.assertAllClose(target, output) def test_non_neg(self): constraint_fn = constraints.NonNeg() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) self.assertTrue((np.min(output, axis=1) >= 0.0).all()) def test_unit_norm(self): constraint_fn = constraints.UnitNorm() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertAllClose(l2, 1.0) def test_min_max_norm(self): constraint_fn = constraints.MinMaxNorm(min_value=0.2, max_value=0.5) output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertFalse(l2[l2 < 0.2]) self.assertFalse(l2[l2 > 0.5 + 1e-6]) def test_get_method(self): obj = constraints.get("unit_norm") self.assertTrue(obj, constraints.UnitNorm) obj = constraints.get(None) self.assertEqual(obj, None) with self.assertRaises(ValueError): constraints.get("typo") def test_default_constraint_call(self): constraint_fn = constraints.Constraint() x = np.array([1.0, 2.0, 3.0]) output = constraint_fn(x) self.assertAllClose(x, output) def test_constraint_get_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() self.assertEqual(config, {}) def test_constraint_from_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() recreated_constraint_fn = constraints.Constraint.from_config(config) self.assertIsInstance(recreated_constraint_fn, constraints.Constraint) def test_max_norm_get_config(self): constraint_fn = constraints.MaxNorm(max_value=3.0, axis=1) config = constraint_fn.get_config() expected_config = {"max_value": 3.0, "axis": 1} self.assertEqual(config, expected_config) def test_unit_norm_get_config(self): constraint_fn = constraints.UnitNorm(axis=1) config = constraint_fn.get_config() expected_config = {"axis": 1} self.assertEqual(config, expected_config) def test_min_max_norm_get_config(self): constraint_fn = constraints.MinMaxNorm( min_value=0.5, max_value=2.0, rate=0.7, axis=1 ) config = constraint_fn.get_config() expected_config = { "min_value": 0.5, "max_value": 2.0, "rate": 0.7, "axis": 1, } self.assertEqual(config, expected_config)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import math import os import os.path as osp from multiprocessing import Pool import torch from mmengine.config import Config from mmengine.utils import mkdir_or_exist def download(url, out_file, min_bytes=math.pow(1024, 2), progress=True): # math.pow(1024, 2) is mean 1 MB assert_msg = f"Downloaded url '{url}' does not exist " \ f'or size is < min_bytes={min_bytes}' try: print(f'Downloading {url} to {out_file}...') torch.hub.download_url_to_file(url, str(out_file), progress=progress) assert osp.exists( out_file) and osp.getsize(out_file) > min_bytes, assert_msg except Exception as e: if osp.exists(out_file): os.remove(out_file) print(f'ERROR: {e}\nRe-attempting {url} to {out_file} ...') os.system(f"curl -L '{url}' -o '{out_file}' --retry 3 -C -" ) # curl download, retry and resume on fail finally: if osp.exists(out_file) and osp.getsize(out_file) < min_bytes: os.remove(out_file) # remove partial downloads if not osp.exists(out_file): print(f'ERROR: {assert_msg}\n') print('=========================================\n') def parse_args(): parser = argparse.ArgumentParser(description='Download checkpoints') parser.add_argument('config', help='test config file path') parser.add_argument( 'out', type=str, help='output dir of checkpoints to be stored') parser.add_argument( '--nproc', type=int, default=16, help='num of Processes') parser.add_argument( '--intranet', action='store_true', help='switch to internal network url') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() mkdir_or_exist(args.out) cfg = Config.fromfile(args.config) checkpoint_url_list = [] checkpoint_out_list = [] for model in cfg: model_infos = cfg[model] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: checkpoint = model_info['checkpoint'] out_file = osp.join(args.out, checkpoint) if not osp.exists(out_file): url = model_info['url'] if args.intranet is True: url = url.replace('.com', '.sensetime.com') url = url.replace('https', 'http') checkpoint_url_list.append(url) checkpoint_out_list.append(out_file) if len(checkpoint_url_list) > 0: pool = Pool(min(os.cpu_count(), args.nproc)) pool.starmap(download, zip(checkpoint_url_list, checkpoint_out_list)) else: print('No files to download!')
# Copyright (c) OpenMMLab. All rights reserved. import argparse import math import os import os.path as osp from multiprocessing import Pool import mmcv import torch from mmcv import Config def download(url, out_file, min_bytes=math.pow(1024, 2), progress=True): # math.pow(1024, 2) is mean 1 MB assert_msg = f"Downloaded url '{url}' does not exist " \ f'or size is < min_bytes={min_bytes}' try: print(f'Downloading {url} to {out_file}...') torch.hub.download_url_to_file(url, str(out_file), progress=progress) assert osp.exists( out_file) and osp.getsize(out_file) > min_bytes, assert_msg except Exception as e: if osp.exists(out_file): os.remove(out_file) print(f'ERROR: {e}\nRe-attempting {url} to {out_file} ...') os.system(f"curl -L '{url}' -o '{out_file}' --retry 3 -C -" ) # curl download, retry and resume on fail finally: if osp.exists(out_file) and osp.getsize(out_file) < min_bytes: os.remove(out_file) # remove partial downloads if not osp.exists(out_file): print(f'ERROR: {assert_msg}\n') print('=========================================\n') def parse_args(): parser = argparse.ArgumentParser(description='Download checkpoints') parser.add_argument('config', help='test config file path') parser.add_argument( 'out', type=str, help='output dir of checkpoints to be stored') parser.add_argument( '--nproc', type=int, default=16, help='num of Processes') parser.add_argument( '--intranet', action='store_true', help='switch to internal network url') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() mmcv.mkdir_or_exist(args.out) cfg = Config.fromfile(args.config) checkpoint_url_list = [] checkpoint_out_list = [] for model in cfg: model_infos = cfg[model] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: checkpoint = model_info['checkpoint'] out_file = osp.join(args.out, checkpoint) if not osp.exists(out_file): url = model_info['url'] if args.intranet is True: url = url.replace('.com', '.sensetime.com') url = url.replace('https', 'http') checkpoint_url_list.append(url) checkpoint_out_list.append(out_file) if len(checkpoint_url_list) > 0: pool = Pool(min(os.cpu_count(), args.nproc)) pool.starmap(download, zip(checkpoint_url_list, checkpoint_out_list)) else: print('No files to download!')
import os import urllib import numpy as np import PIL import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): w, h = 224, 224 url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_to_bytes(width=w, height=h) assert isinstance(_bytes, bytes) img = PIL.Image.frombytes(mode='1', size=(w, h), data=_bytes) assert isinstance(img, PIL.Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
import os import urllib import numpy as np import PIL import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): w, h = 224, 224 url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_to_bytes(width=w, height=h) assert isinstance(_bytes, bytes) img = PIL.Image.frombytes(mode='1', size=(w, h), data=_bytes) assert isinstance(img, PIL.Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
from collections import defaultdict from typing import TYPE_CHECKING, Optional from google.protobuf.json_format import MessageToDict from google.protobuf.struct_pb2 import Struct from docarray.proto.io.ndarray import flush_ndarray, read_ndarray from docarray.proto.docarray_pb2 import NdArrayProto, DocumentProto if TYPE_CHECKING: # pragma: no cover from docarray import Document def parse_proto(pb_msg: 'DocumentProto') -> 'Document': from docarray import Document from docarray.score import NamedScore fields = {} for (field, value) in pb_msg.ListFields(): f_name = field.name if f_name == 'chunks' or f_name == 'matches': fields[f_name] = [Document.from_protobuf(d) for d in value] elif isinstance(value, NdArrayProto): fields[f_name] = read_ndarray(value) elif isinstance(value, Struct): fields[f_name] = MessageToDict(value, preserving_proto_field_name=True) elif f_name == 'location': fields[f_name] = list(value) elif f_name == 'scores' or f_name == 'evaluations': fields[f_name] = defaultdict(NamedScore) for k, v in value.items(): fields[f_name][k] = NamedScore( {ff.name: vv for (ff, vv) in v.ListFields()} ) else: fields[f_name] = value return Document(**fields) def flush_proto(doc: 'Document', ndarray_type: Optional[str] = None) -> 'DocumentProto': pb_msg = DocumentProto() for key in doc.non_empty_fields: try: value = getattr(doc, key) if key in ('tensor', 'embedding'): flush_ndarray(getattr(pb_msg, key), value, ndarray_type=ndarray_type) elif key in ('chunks', 'matches'): for d in value: d: Document docs = getattr(pb_msg, key) docs.append(d.to_protobuf()) elif key == 'tags': pb_msg.tags.update(value) elif key == '_metadata': pb_msg._metadata.update(value) elif key in ('scores', 'evaluations'): for kk, vv in value.items(): for ff in vv.non_empty_fields: setattr(getattr(pb_msg, key)[kk], ff, getattr(vv, ff)) elif key == 'location': pb_msg.location.extend(value) elif key == 'content': pass # intentionally ignore `content` field as it is just a proxy else: # other simple fields setattr(pb_msg, key, value) except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( f'Field `{key}` contains cyclic reference in memory. ' f'Could it be your Document is referring to itself?', ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{key}` is problematic',) + ex.args raise return pb_msg
from collections import defaultdict from typing import TYPE_CHECKING, Optional from google.protobuf.json_format import MessageToDict from google.protobuf.struct_pb2 import Struct from docarray.proto.io.ndarray import flush_ndarray, read_ndarray from docarray.proto.docarray_pb2 import NdArrayProto, DocumentProto if TYPE_CHECKING: from docarray import Document def parse_proto(pb_msg: 'DocumentProto') -> 'Document': from docarray import Document from docarray.score import NamedScore fields = {} for (field, value) in pb_msg.ListFields(): f_name = field.name if f_name == 'chunks' or f_name == 'matches': fields[f_name] = [Document.from_protobuf(d) for d in value] elif isinstance(value, NdArrayProto): fields[f_name] = read_ndarray(value) elif isinstance(value, Struct): fields[f_name] = MessageToDict(value, preserving_proto_field_name=True) elif f_name == 'location': fields[f_name] = list(value) elif f_name == 'scores' or f_name == 'evaluations': fields[f_name] = defaultdict(NamedScore) for k, v in value.items(): fields[f_name][k] = NamedScore( {ff.name: vv for (ff, vv) in v.ListFields()} ) else: fields[f_name] = value return Document(**fields) def flush_proto(doc: 'Document', ndarray_type: Optional[str] = None) -> 'DocumentProto': pb_msg = DocumentProto() for key in doc.non_empty_fields: try: value = getattr(doc, key) if key in ('tensor', 'embedding'): flush_ndarray(getattr(pb_msg, key), value, ndarray_type=ndarray_type) elif key in ('chunks', 'matches'): for d in value: d: Document docs = getattr(pb_msg, key) docs.append(d.to_protobuf()) elif key == 'tags': pb_msg.tags.update(value) elif key == '_metadata': pb_msg._metadata.update(value) elif key in ('scores', 'evaluations'): for kk, vv in value.items(): for ff in vv.non_empty_fields: setattr(getattr(pb_msg, key)[kk], ff, getattr(vv, ff)) elif key == 'location': pb_msg.location.extend(value) elif key == 'content': pass # intentionally ignore `content` field as it is just a proxy else: # other simple fields setattr(pb_msg, key, value) except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( f'Field `{key}` contains cyclic reference in memory. ' f'Could it be your Document is referring to itself?', ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{key}` is problematic',) + ex.args raise return pb_msg
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils.validation import check_is_fitted, validate_data ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = validate_data(self, X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Returns ------- X_original : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `X` assigned to each of the cluster of samples. """ check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils.validation import check_is_fitted, validate_data ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = validate_data(self, X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from itertools import groupby from typing import Dict, Iterable from jina import DocumentArray, Executor, requests class SimpleRanker(Executor): """ :class:`SimpleRanker` aggregates the score of the matched doc from the matched chunks. For each matched doc, the score is aggregated from all the matched chunks belonging to that doc. The score of the document is the minimum score (min distance) among the chunks. The aggregated matches are sorted by score (ascending). """ def __init__( self, metric: str = 'cosine', ranking: str = 'min', traversal_paths: Iterable[str] = ('r',), *args, **kwargs ): """ :param metric: the distance metric used in `scores` :param renking: The ranking function that the executor uses. There are multiple options: - min: Select minimum score/distance and sort by minimum - max: Select maximum score/distance and sort by maximum - mean_min: Calculate mean score/distance and sort by minimum mean - mean_max: Calculate mean score/distance and sort by maximum mean :param traversal_paths: traverse path on docs, e.g. ['r'], ['c'] """ super().__init__(*args, **kwargs) self.metric = metric assert ranking in ['min', 'max', 'mean_min', 'mean_max'] self.ranking = ranking self.traversal_paths = traversal_paths @requests(on='/search') def rank(self, docs: DocumentArray, parameters: Dict, *args, **kwargs): traversal_paths = parameters.get('traversal_paths', self.traversal_paths) for doc in docs.traverse_flat(traversal_paths): matches_of_chunks = [] for chunk in doc.chunks: matches_of_chunks.extend(chunk.matches) groups = groupby( sorted(matches_of_chunks, key=lambda d: d.parent_id), lambda d: d.parent_id, ) for key, group in groups: chunk_match_list = list(group) if self.ranking == 'min': chunk_match_list.sort(key=lambda m: m.scores[self.metric].value) elif self.ranking == 'max': chunk_match_list.sort(key=lambda m: -m.scores[self.metric].value) match = chunk_match_list[0] match.id = chunk_match_list[0].parent_id if self.ranking in ['mean_min', 'mean_max']: scores = [el.scores[self.metric].value for el in chunk_match_list] match.scores[self.metric] = sum(scores) / len(scores) doc.matches.append(match) if self.ranking in ['min', 'mean_min']: doc.matches.sort(key=lambda d: d.scores[self.metric].value) elif self.ranking in ['max', 'mean_max']: doc.matches.sort(key=lambda d: -d.scores[self.metric].value)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from itertools import groupby from typing import Dict, Iterable from jina import DocumentArray, Executor, requests class SimpleRanker(Executor): """ :class:`SimpleRanker` aggregates the score of the matched doc from the matched chunks. For each matched doc, the score is aggregated from all the matched chunks belonging to that doc. The score of the document is the minimum score (min distance) among the chunks. The aggregated matches are sorted by score (ascending). """ def __init__( self, metric: str = 'cosine', ranking: str = 'min', default_traversal_paths: Iterable[str] = ('r',), *args, **kwargs ): """ :param metric: the distance metric used in `scores` :param renking: The ranking function that the executor uses. There are multiple options: - min: Select minimum score/distance and sort by minimum - max: Select maximum score/distance and sort by maximum - mean_min: Calculate mean score/distance and sort by minimum mean - mean_max: Calculate mean score/distance and sort by maximum mean :param default_traversal_paths: traverse path on docs, e.g. ['r'], ['c'] """ super().__init__(*args, **kwargs) self.metric = metric assert ranking in ['min', 'max', 'mean_min', 'mean_max'] self.ranking = ranking self.default_traversal_paths = default_traversal_paths @requests(on='/search') def rank(self, docs: DocumentArray, parameters: Dict, *args, **kwargs): traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): matches_of_chunks = [] for chunk in doc.chunks: matches_of_chunks.extend(chunk.matches) groups = groupby( sorted(matches_of_chunks, key=lambda d: d.parent_id), lambda d: d.parent_id, ) for key, group in groups: chunk_match_list = list(group) if self.ranking == 'min': chunk_match_list.sort(key=lambda m: m.scores[self.metric].value) elif self.ranking == 'max': chunk_match_list.sort(key=lambda m: -m.scores[self.metric].value) match = chunk_match_list[0] match.id = chunk_match_list[0].parent_id if self.ranking in ['mean_min', 'mean_max']: scores = [el.scores[self.metric].value for el in chunk_match_list] match.scores[self.metric] = sum(scores) / len(scores) doc.matches.append(match) if self.ranking in ['min', 'mean_min']: doc.matches.sort(key=lambda d: d.scores[self.metric].value) elif self.ranking in ['max', 'mean_max']: doc.matches.sort(key=lambda d: -d.scores[self.metric].value)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.registry import HOOKS from mmengine.structures import BaseDataElement from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import get_uncertain_point_coords_with_randomness from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU', 'get_uncertain_point_coords_with_randomness' ]
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import interpolate_as, sigmoid_geometric_mean from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU' ]
import numpy as np import torch from docarray import BaseDocument, DocumentArray from docarray.documents import Image, Text from docarray.typing import ( AnyEmbedding, AnyTensor, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: AnyEmbedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = doc.to_protobuf() doc = MyDoc.from_protobuf(doc) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import BaseDocument, DocumentArray from docarray.documents import Image, Text from docarray.typing import ( AnyEmbedding, AnyTensor, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: AnyEmbedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.audio import OpenAIWhisperParser from langchain_community.document_loaders.parsers.docai import DocAIParser from langchain_community.document_loaders.parsers.grobid import GrobidParser from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser from langchain_community.document_loaders.parsers.language.language_parser import ( LanguageParser, ) from langchain_community.document_loaders.parsers.pdf import ( PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4", "DocAIParser": "langchain_community.document_loaders.parsers.docai", "GrobidParser": "langchain_community.document_loaders.parsers.grobid", "LanguageParser": ( "langchain_community.document_loaders.parsers.language.language_parser" ), "OpenAIWhisperParser": "langchain_community.document_loaders.parsers.audio", "PDFMinerParser": "langchain_community.document_loaders.parsers.pdf", "PDFPlumberParser": "langchain_community.document_loaders.parsers.pdf", "PyMuPDFParser": "langchain_community.document_loaders.parsers.pdf", "PyPDFium2Parser": "langchain_community.document_loaders.parsers.pdf", "PyPDFParser": "langchain_community.document_loaders.parsers.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", "DocAIParser", "GrobidParser", "LanguageParser", "OpenAIWhisperParser", "PDFMinerParser", "PDFPlumberParser", "PyMuPDFParser", "PyPDFParser", "PyPDFium2Parser", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.audio import OpenAIWhisperParser from langchain_community.document_loaders.parsers.docai import DocAIParser from langchain_community.document_loaders.parsers.grobid import GrobidParser from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser from langchain_community.document_loaders.parsers.language.language_parser import ( LanguageParser, ) from langchain_community.document_loaders.parsers.pdf import ( PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4", "DocAIParser": "langchain_community.document_loaders.parsers.docai", "GrobidParser": "langchain_community.document_loaders.parsers.grobid", "LanguageParser": ( "langchain_community.document_loaders.parsers.language.language_parser" ), "OpenAIWhisperParser": "langchain_community.document_loaders.parsers.audio", "PDFMinerParser": "langchain_community.document_loaders.parsers.pdf", "PDFPlumberParser": "langchain_community.document_loaders.parsers.pdf", "PyMuPDFParser": "langchain_community.document_loaders.parsers.pdf", "PyPDFium2Parser": "langchain_community.document_loaders.parsers.pdf", "PyPDFParser": "langchain_community.document_loaders.parsers.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", "DocAIParser", "GrobidParser", "LanguageParser", "OpenAIWhisperParser", "PDFMinerParser", "PDFPlumberParser", "PyMuPDFParser", "PyPDFium2Parser", "PyPDFParser", ]
"""Weaviate Retry query engine pack.""" from typing import Any, Dict, List, Optional from llama_index.core.evaluation.guideline import DEFAULT_GUIDELINES, GuidelineEvaluator from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine.retry_query_engine import ( RetryGuidelineQueryEngine, ) from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.core.vector_stores.types import VectorStoreInfo from llama_index.vector_stores.weaviate import WeaviateVectorStore class WeaviateRetryEnginePack(BaseLlamaPack): """Weaviate Retry query engine pack.""" def __init__( self, collection_name: str, vector_store_info: VectorStoreInfo, host: str, auth_client_secret: str, nodes: Optional[List[TextNode]] = None, **kwargs: Any, ) -> None: """Init params.""" from weaviate import Client self.client: Client = Client(host, auth_client_secret=auth_client_secret) weaviate_client = self.client weaviate_collection = weaviate_client.get_or_create_collection(collection_name) self._vector_store = WeaviateVectorStore( weaviate_collection=weaviate_collection ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever() base_query_engine = self._index.as_query_engine() guideline_eval = GuidelineEvaluator(guidelines=DEFAULT_GUIDELINES) self.query_engine = RetryGuidelineQueryEngine( base_query_engine, guideline_eval, resynthesize_query=True ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""Weaviate Retry query engine pack.""" from typing import Any, Dict, List, Optional from llama_index.core.evaluation.guideline import DEFAULT_GUIDELINES, GuidelineEvaluator from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine.retry_query_engine import ( RetryGuidelineQueryEngine, ) from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.core.vector_stores.types import VectorStoreInfo from llama_index.vector_stores.weaviate import WeaviateVectorStore class WeaviateRetryEnginePack(BaseLlamaPack): """Weaviate Retry query engine pack.""" def __init__( self, collection_name: str, vector_store_info: VectorStoreInfo, host: str, auth_client_secret: str, nodes: Optional[List[TextNode]] = None, **kwargs: Any, ) -> None: """Init params.""" from weaviate import Client self.client: Client = Client(host, auth_client_secret=auth_client_secret) weaviate_client = self.client weaviate_collection = weaviate_client.get_or_create_collection(collection_name) self._vector_store = WeaviateVectorStore( weaviate_collection=weaviate_collection ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever() base_query_engine = self._index.as_query_engine() guideline_eval = GuidelineEvaluator(guidelines=DEFAULT_GUIDELINES) self.query_engine = RetryGuidelineQueryEngine( base_query_engine, guideline_eval, resynthesize_query=True ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
from collections.abc import Sequence from typing import Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser def create_openai_tools_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, strict: Optional[bool] = None, # noqa: FBT001 ) -> Runnable: """Create an agent that uses OpenAI tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Raises: ValueError: If the prompt is missing required variables. Example: .. code-block:: python from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_openai_tools_agent prompt = hub.pull("hwchase17/openai-tools-agent") model = ChatOpenAI() tools = ... agent = create_openai_tools_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. Here's an example: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), MessagesPlaceholder("chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder("agent_scratchpad"), ] ) """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables), ) if missing_vars: msg = f"Prompt missing required variables: {missing_vars}" raise ValueError(msg) llm_with_tools = llm.bind( tools=[convert_to_openai_tool(tool, strict=strict) for tool in tools], ) return ( RunnablePassthrough.assign( agent_scratchpad=lambda x: format_to_openai_tool_messages( x["intermediate_steps"], ), ) | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() )
from collections.abc import Sequence from typing import Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser def create_openai_tools_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, strict: Optional[bool] = None, # noqa: FBT001 ) -> Runnable: """Create an agent that uses OpenAI tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Raises: ValueError: If the prompt is missing required variables. Example: .. code-block:: python from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_openai_tools_agent prompt = hub.pull("hwchase17/openai-tools-agent") model = ChatOpenAI() tools = ... agent = create_openai_tools_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. Here's an example: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), MessagesPlaceholder("chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder("agent_scratchpad"), ] ) """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: msg = f"Prompt missing required variables: {missing_vars}" raise ValueError(msg) llm_with_tools = llm.bind( tools=[convert_to_openai_tool(tool, strict=strict) for tool in tools] ) return ( RunnablePassthrough.assign( agent_scratchpad=lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ) ) | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() )
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import ( JsonOutputParser, SimpleJsonOutputParser, ) from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ] _dynamic_imports = { "BaseLLMOutputParser": "base", "BaseGenerationOutputParser": "base", "BaseOutputParser": "base", "JsonOutputParser": "json", "SimpleJsonOutputParser": "json", "ListOutputParser": "list", "CommaSeparatedListOutputParser": "list", "MarkdownListOutputParser": "list", "NumberedListOutputParser": "list", "JsonOutputKeyToolsParser": "openai_tools", "JsonOutputToolsParser": "openai_tools", "PydanticToolsParser": "openai_tools", "PydanticOutputParser": "pydantic", "StrOutputParser": "string", "BaseTransformOutputParser": "transform", "BaseCumulativeTransformOutputParser": "transform", "XMLOutputParser": "xml", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return __all__
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import ( JsonOutputParser, SimpleJsonOutputParser, ) from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ] _dynamic_imports = { "BaseLLMOutputParser": "base", "BaseGenerationOutputParser": "base", "BaseOutputParser": "base", "JsonOutputParser": "json", "SimpleJsonOutputParser": "json", "ListOutputParser": "list", "CommaSeparatedListOutputParser": "list", "MarkdownListOutputParser": "list", "NumberedListOutputParser": "list", "JsonOutputKeyToolsParser": "openai_tools", "JsonOutputToolsParser": "openai_tools", "PydanticToolsParser": "openai_tools", "PydanticOutputParser": "pydantic", "StrOutputParser": "string", "BaseTransformOutputParser": "transform", "BaseCumulativeTransformOutputParser": "transform", "XMLOutputParser": "xml", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_cosmos2_text2image"] = ["Cosmos2TextToImagePipeline"] _import_structure["pipeline_cosmos2_video2world"] = ["Cosmos2VideoToWorldPipeline"] _import_structure["pipeline_cosmos_text2world"] = ["CosmosTextToWorldPipeline"] _import_structure["pipeline_cosmos_video2world"] = ["CosmosVideoToWorldPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_cosmos2_text2image import Cosmos2TextToImagePipeline from .pipeline_cosmos2_video2world import Cosmos2VideoToWorldPipeline from .pipeline_cosmos_text2world import CosmosTextToWorldPipeline from .pipeline_cosmos_video2world import CosmosVideoToWorldPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_cosmos_text2world"] = ["CosmosTextToWorldPipeline"] _import_structure["pipeline_cosmos_video2world"] = ["CosmosVideoToWorldPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_cosmos_text2world import CosmosTextToWorldPipeline from .pipeline_cosmos_video2world import CosmosVideoToWorldPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
import requests import pytest import os from llama_index.core.readers.base import BaseReader from llama_index.readers.whisper import WhisperReader from io import BytesIO AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" AUDIO_URL = "https://audio-samples.github.io/samples/mp3/blizzard_primed/sample-0.mp3" OPENAI_AVAILABLE = os.getenv("OPENAI_API_KEY") is not None def test_class(): names_of_base_classes = [b.__name__ for b in WhisperReader.__mro__] assert BaseReader.__name__ in names_of_base_classes def test_get_file_or_bytes(): reader = WhisperReader(model="whisper-1", api_key="test") audio_bytes = requests.get(AUDIO_URL).content file_path_or_bytes = reader._get_file_path_or_bytes(audio_bytes) assert isinstance(file_path_or_bytes, BytesIO) def test_get_file_or_bytes_file(): reader = WhisperReader(model="whisper-1", api_key="test") audio_bytes = requests.get(AUDIO_URL).content # Create a temporary file-like object with a name audio_file = BytesIO(audio_bytes) audio_file.name = "audio.mp3" file_path_or_bytes = reader._get_file_path_or_bytes(audio_file) assert isinstance(file_path_or_bytes, BytesIO) @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") def test_load_data_bytes(): reader = WhisperReader(model="whisper-1") audio_bytes = requests.get(AUDIO_URL).content audio_file = BytesIO(audio_bytes) audio_file.name = "audio.mp3" documents = reader.load_data(audio_file) assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") def test_load_data_file(): reader = WhisperReader(model="whisper-1") audio_file = requests.get(AUDIO_URL) with open("test_audio.mp3", "wb") as f: f.write(audio_file.content) documents = reader.load_data("test_audio.mp3") assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") @pytest.mark.asyncio async def test_load_data_async_bytes(): reader = WhisperReader(model="whisper-1") audio_bytes = requests.get(AUDIO_URL).content documents = await reader.aload_data(audio_bytes) assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None
import requests import pytest import os from llama_index.core.readers.base import BaseReader from llama_index.readers.whisper import WhisperReader from io import BytesIO AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" AUDIO_URL = "https://audio-samples.github.io/samples/mp3/blizzard_primed/sample-0.mp3" OPENAI_AVAILABLE = os.getenv("OPENAI_API_KEY") is not None def test_class(): names_of_base_classes = [b.__name__ for b in WhisperReader.__mro__] assert BaseReader.__name__ in names_of_base_classes def test_get_file_or_bytes(): reader = WhisperReader(model="whisper-1", api_key="test") audio_bytes = requests.get(AUDIO_URL).content file_path_or_bytes = reader._get_file_path_or_bytes(audio_bytes) assert isinstance(file_path_or_bytes, BytesIO) def test_get_file_or_bytes_file(): reader = WhisperReader(model="whisper-1", api_key="test") audio_bytes = requests.get(AUDIO_URL).content # Create a temporary file-like object with a name audio_file = BytesIO(audio_bytes) audio_file.name = "audio.mp3" file_path_or_bytes = reader._get_file_path_or_bytes(audio_file) assert isinstance(file_path_or_bytes, BytesIO) @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") def test_load_data_bytes(): reader = WhisperReader(model="whisper-1") audio_bytes = requests.get(AUDIO_URL).content audio_file = BytesIO(audio_bytes) audio_file.name = "audio.mp3" documents = reader.load_data(audio_file) assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") def test_load_data_file(): reader = WhisperReader(model="whisper-1") audio_file = requests.get(AUDIO_URL) with open("test_audio.mp3", "wb") as f: f.write(audio_file.content) documents = reader.load_data("test_audio.mp3") assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None @pytest.mark.skipif(not OPENAI_AVAILABLE, reason="OpenAI API key not available") @pytest.mark.asyncio() async def test_load_data_async_bytes(): reader = WhisperReader(model="whisper-1") audio_bytes = requests.get(AUDIO_URL).content documents = await reader.aload_data(audio_bytes) assert len(documents) == 1 assert documents[0].text is not None assert documents[0].metadata is not None
from typing import Generator, Optional import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batched from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocList[ImageDoc]([ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(docs=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(docs=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(docs=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocList[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(docs=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocList) -> DocList: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDoc): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batched(n_docs, batch_size, backend): da = DocList[MyImage]([MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)]) it = map_docs_batched( docs=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocList[MyImage])
from typing import Generator, Optional import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batched from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocArray[ImageDoc]([ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocArray) -> DocArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDoc): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batched(n_docs, batch_size, backend): da = DocArray[MyImage]([MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)]) it = map_docs_batched( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocArray[MyImage])
from jina import Flow, Executor, requests import pytest class GoodExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests def foo(self, **kwargs): pass class GoodExecutor2(Executor): def __init__(self, metas, requests, runtime_args, dynamic_batching): pass @requests def foo(self, docs, parameters, docs_matrix): pass def test_bad_executor_constructor(): # executor can be used as out of Flow as Python object exec1 = GoodExecutor() exec2 = GoodExecutor2({}, {}, {}, {}) # can be used in the Flow with Flow().add(uses=GoodExecutor): pass with Flow().add(uses=GoodExecutor2): pass # bad executor due to mismatch on args with pytest.raises(TypeError): class BadExecutor1(Executor): def __init__(self): pass @requests def foo(self, **kwargs): pass with pytest.raises(TypeError): class BadExecutor2(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests def foo(self): pass
from jina import Flow, Executor, requests import pytest class GoodExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests def foo(self, **kwargs): pass class GoodExecutor2(Executor): def __init__(self, metas, requests, runtime_args): pass @requests def foo(self, docs, parameters, docs_matrix): pass def test_bad_executor_constructor(): # executor can be used as out of Flow as Python object exec1 = GoodExecutor() exec2 = GoodExecutor2({}, {}, {}) # can be used in the Flow with Flow().add(uses=GoodExecutor): pass with Flow().add(uses=GoodExecutor2): pass # bad executor due to mismatch on args with pytest.raises(TypeError): class BadExecutor1(Executor): def __init__(self): pass @requests def foo(self, **kwargs): pass with pytest.raises(TypeError): class BadExecutor2(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests def foo(self): pass
"""Meta-estimators for building composite models with transformers. In addition to its current contents, this module will eventually be home to refurbished versions of :class:`~sklearn.pipeline.Pipeline` and :class:`~sklearn.pipeline.FeatureUnion`. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._column_transformer import ( ColumnTransformer, make_column_selector, make_column_transformer, ) from ._target import TransformedTargetRegressor __all__ = [ "ColumnTransformer", "TransformedTargetRegressor", "make_column_selector", "make_column_transformer", ]
"""Meta-estimators for building composite models with transformers. In addition to its current contents, this module will eventually be home to refurbished versions of :class:`~sklearn.pipeline.Pipeline` and :class:`~sklearn.pipeline.FeatureUnion`. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._column_transformer import ( ColumnTransformer, make_column_selector, make_column_transformer, ) from ._target import TransformedTargetRegressor __all__ = [ "ColumnTransformer", "make_column_transformer", "TransformedTargetRegressor", "make_column_selector", ]
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .ListNetLoss import ListNetLoss from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", "ListNetLoss", ]
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import GetElementsTool from langchain_community.tools.playwright.get_elements import GetElementsToolInput # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GetElementsToolInput": "langchain_community.tools.playwright.get_elements", "GetElementsTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GetElementsTool", "GetElementsToolInput", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import GetElementsTool from langchain_community.tools.playwright.get_elements import GetElementsToolInput # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GetElementsToolInput": "langchain_community.tools.playwright.get_elements", "GetElementsTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GetElementsToolInput", "GetElementsTool", ]
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ import csv import os import time from sentence_transformers import SentenceTransformer, util # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ from sentence_transformers import SentenceTransformer, util import os import csv import time # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request :param device: device to use for encoding. ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.batch_size) document_batches_generator = docs.traverse_flat( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), filter_fn=lambda doc:len(doc.text)>0 ).batch( batch_size=batch_size, ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request :param device: device to use for encoding. ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.batch_size) document_batches_generator = docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=batch_size, require_attr='text', ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
import pytest import torch from PIL import Image from torchvision import datapoints @pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)]) def test_image_instance(data): image = datapoints.Image(data) assert isinstance(image, torch.Tensor) assert image.ndim == 3 and image.shape[0] == 3 @pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)]) def test_mask_instance(data): mask = datapoints.Mask(data) assert isinstance(mask, torch.Tensor) assert mask.ndim == 3 and mask.shape[0] == 1 @pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]]]) @pytest.mark.parametrize( "format", ["XYXY", "CXCYWH", datapoints.BoundingBoxFormat.XYXY, datapoints.BoundingBoxFormat.XYWH] ) def test_bbox_instance(data, format): bboxes = datapoints.BoundingBox(data, format=format, spatial_size=(32, 32)) assert isinstance(bboxes, torch.Tensor) assert bboxes.ndim == 2 and bboxes.shape[1] == 4 if isinstance(format, str): format = datapoints.BoundingBoxFormat[(format.upper())] assert bboxes.format == format
import pytest import torch from PIL import Image from torchvision import datapoints @pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)]) def test_image_instance(data): image = datapoints.Image(data) assert isinstance(image, torch.Tensor) assert image.ndim == 3 and image.shape[0] == 3 @pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)]) def test_mask_instance(data): mask = datapoints.Mask(data) assert isinstance(mask, torch.Tensor) assert mask.ndim == 3 and mask.shape[0] == 1 @pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]]]) @pytest.mark.parametrize( "format", ["XYXY", "CXCYWH", datapoints.BoundingBoxFormat.XYXY, datapoints.BoundingBoxFormat.XYWH] ) def test_bbox_instance(data, format): bboxes = datapoints.BoundingBox(data, format=format, spatial_size=(32, 32)) assert isinstance(bboxes, torch.Tensor) assert bboxes.ndim == 2 and bboxes.shape[1] == 4 if isinstance(format, str): format = datapoints.BoundingBoxFormat.from_str(format.upper()) assert bboxes.format == format
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ import gzip import logging import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, datasets, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Train Parameters model_name = "bert-base-uncased" batch_size = 8 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with ( gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open(filepath, encoding="utf8") as fIn ): for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info(f"{len(train_sentences)} train sentences") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler="constantlr", optimizer_params={"lr": 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ import gzip import logging import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, datasets, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Train Parameters model_name = "bert-base-uncased" batch_size = 8 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info(f"{len(train_sentences)} train sentences") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler="constantlr", optimizer_params={"lr": 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False, # Set to True, if your GPU supports FP16 cores )
import gc import unittest import numpy as np import torch from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline from diffusers.utils.testing_utils import ( backend_empty_cache, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = LuminaText2ImgPipeline params = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) batch_params = frozenset(["prompt", "negative_prompt"]) supports_dduf = False test_layerwise_casting = True test_group_offloading = True def get_dummy_components(self): torch.manual_seed(0) transformer = LuminaNextDiT2DModel( sample_size=4, patch_size=2, in_channels=4, hidden_size=4, num_layers=2, num_attention_heads=1, num_kv_heads=1, multiple_of=16, ffn_dim_multiplier=None, norm_eps=1e-5, learn_sigma=True, qk_norm=True, cross_attention_dim=8, scaling_factor=1.0, ) torch.manual_seed(0) vae = AutoencoderKL() scheduler = FlowMatchEulerDiscreteScheduler() tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") torch.manual_seed(0) config = GemmaConfig( head_dim=2, hidden_size=8, intermediate_size=37, num_attention_heads=4, num_hidden_layers=2, num_key_value_heads=4, ) text_encoder = GemmaForCausalLM(config) components = { "transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder.eval(), "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", } return inputs @unittest.skip("xformers attention processor does not exist for Lumina") def test_xformers_attention_forwardGenerator_pass(self): pass @slow @require_torch_accelerator class LuminaText2ImgPipelineSlowTests(unittest.TestCase): pipeline_class = LuminaText2ImgPipeline repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "prompt": "A photo of a cat", "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "generator": generator, } def test_lumina_inference(self): pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] image_slice = image[0, :10, :10] expected_slice = np.array( [ [0.17773438, 0.18554688, 0.22070312], [0.046875, 0.06640625, 0.10351562], [0.0, 0.0, 0.02148438], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ], dtype=np.float32, ) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
import gc import unittest import numpy as np import torch from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline from diffusers.utils.testing_utils import ( numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = LuminaText2ImgPipeline params = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) batch_params = frozenset(["prompt", "negative_prompt"]) supports_dduf = False test_layerwise_casting = True test_group_offloading = True def get_dummy_components(self): torch.manual_seed(0) transformer = LuminaNextDiT2DModel( sample_size=4, patch_size=2, in_channels=4, hidden_size=4, num_layers=2, num_attention_heads=1, num_kv_heads=1, multiple_of=16, ffn_dim_multiplier=None, norm_eps=1e-5, learn_sigma=True, qk_norm=True, cross_attention_dim=8, scaling_factor=1.0, ) torch.manual_seed(0) vae = AutoencoderKL() scheduler = FlowMatchEulerDiscreteScheduler() tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") torch.manual_seed(0) config = GemmaConfig( head_dim=2, hidden_size=8, intermediate_size=37, num_attention_heads=4, num_hidden_layers=2, num_key_value_heads=4, ) text_encoder = GemmaForCausalLM(config) components = { "transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder.eval(), "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", } return inputs @unittest.skip("xformers attention processor does not exist for Lumina") def test_xformers_attention_forwardGenerator_pass(self): pass @slow @require_torch_gpu class LuminaText2ImgPipelineSlowTests(unittest.TestCase): pipeline_class = LuminaText2ImgPipeline repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "prompt": "A photo of a cat", "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "generator": generator, } def test_lumina_inference(self): pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] image_slice = image[0, :10, :10] expected_slice = np.array( [ [0.17773438, 0.18554688, 0.22070312], [0.046875, 0.06640625, 0.10351562], [0.0, 0.0, 0.02148438], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ], dtype=np.float32, ) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
# flake8: noqa import numpy as np from unittest import mock from keras.src import backend from keras.src import testing from keras.src.optimizers.ftrl import Ftrl class FtrlTest(testing.TestCase): def test_config(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) self.run_class_serialization_test(optimizer) def test_single_step(self): optimizer = Ftrl(learning_rate=0.5) grads = np.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose( vars, [0.2218, 1.3954, 2.3651, 2.8814], rtol=1e-4, atol=1e-4 ) def test_correctness_with_golden(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) x = backend.Variable(np.ones([10])) grads = np.arange(0.1, 1.1, 0.1) first_grads = np.full((10,), 0.01) # fmt: off golden = np.array( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.0034, -0.0077, -0.0118, -0.0157, -0.0194, -0.023, -0.0263, -0.0294, -0.0325, -0.0354], [-0.0078, -0.0162, -0.0242, -0.0317, -0.0387, -0.0454, -0.0516, -0.0575, -0.0631, -0.0685], [-0.0121, -0.0246, -0.0363, -0.0472, -0.0573, -0.0668, -0.0757, -0.0842, -0.0922, -0.0999], [-0.0164, -0.0328, -0.0481, -0.0623, -0.0753, -0.0875, -0.099, -0.1098, -0.1201, -0.1299]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = Ftrl(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = Ftrl(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0]) def test_invalid_initial_accumulator_value(self): invalid_value = -0.1 with self.assertRaisesRegex( ValueError, f"^`initial_accumulator_value` needs to be positive or zero. Received: initial_accumulator_value={invalid_value}.$", ): Ftrl(initial_accumulator_value=invalid_value) def test_invalid_learning_rate_power(self): invalid_value = 0.1 with self.assertRaisesRegex( ValueError, f"^`learning_rate_power` needs to be negative or zero. Received: learning_rate_power={invalid_value}.$", ): Ftrl(learning_rate_power=invalid_value) def test_invalid_l1_regularization_strength(self): invalid_value = -0.1 with self.assertRaisesRegex( ValueError, f"^`l1_regularization_strength` needs to be positive or zero. Received: l1_regularization_strength={invalid_value}.$", ): Ftrl(l1_regularization_strength=invalid_value) def test_invalid_l2_regularization_strength(self): invalid_value = -0.1 with self.assertRaisesRegex( ValueError, f"^`l2_regularization_strength` needs to be positive or zero. Received: l2_regularization_strength={invalid_value}.$", ): Ftrl(l2_regularization_strength=invalid_value) def test_invalid_l2_shrinkage_regularization_strength(self): invalid_value = -0.1 with self.assertRaisesRegex( ValueError, f"^`l2_shrinkage_regularization_strength` needs to be positive or zero. Received: l2_shrinkage_regularization_strength={invalid_value}.$", ): Ftrl(l2_shrinkage_regularization_strength=invalid_value)
# flake8: noqa import numpy as np from keras.src import backend from keras.src import testing from keras.src.optimizers.ftrl import Ftrl class FtrlTest(testing.TestCase): def test_config(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) self.run_class_serialization_test(optimizer) def test_single_step(self): optimizer = Ftrl(learning_rate=0.5) grads = np.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose( vars, [0.2218, 1.3954, 2.3651, 2.8814], rtol=1e-4, atol=1e-4 ) def test_correctness_with_golden(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) x = backend.Variable(np.ones([10])) grads = np.arange(0.1, 1.1, 0.1) first_grads = np.full((10,), 0.01) # fmt: off golden = np.array( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.0034, -0.0077, -0.0118, -0.0157, -0.0194, -0.023, -0.0263, -0.0294, -0.0325, -0.0354], [-0.0078, -0.0162, -0.0242, -0.0317, -0.0387, -0.0454, -0.0516, -0.0575, -0.0631, -0.0685], [-0.0121, -0.0246, -0.0363, -0.0472, -0.0573, -0.0668, -0.0757, -0.0842, -0.0922, -0.0999], [-0.0164, -0.0328, -0.0481, -0.0623, -0.0753, -0.0875, -0.099, -0.1098, -0.1201, -0.1299]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = Ftrl(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = Ftrl(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0])
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss. Based on the paper: Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation, https://arxiv.org/abs/2503.01776 This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__( self, model: SparseEncoder, beta: float = 0.1, gamma: float = 1.0, scale: float = 20.0, ): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = ReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sentence_embedding = [output["sentence_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sentence_embedding) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return { "beta": self.beta, "gamma": self.gamma, "scale": self.scale, }
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss. Based on the paper: Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation, https://arxiv.org/abs/2503.01776 This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__( self, model: SparseEncoder, beta: float = 0.1, gamma: float = 1.0, scale: float = 20.0, ): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = ReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sparse_embeddings = [output["sparse_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sparse_embeddings) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return { "beta": self.beta, "gamma": self.gamma, "scale": self.scale, }
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Sparsity Stats Query : Row Non-Zero Mean: 62.97999954223633, Row Sparsity Mean: 0.9979365468025208 Model Sparsity Stats Corpus : Row Non-Zero Mean: 63.39932632446289, Row Sparsity Mean: 0.9979228377342224 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Sparsity Stats Query : Row Non-Zero Mean: 48.08000183105469, Row Sparsity Mean: 0.9984247088432312 Model Sparsity Stats Corpus : Row Non-Zero Mean: 125.3604965209961, Row Sparsity Mean: 0.9958928227424622 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Sparsity Stats Query : Row Non-Zero Mean: 55.53000068664551, Row Sparsity Mean: 0.998180627822876 Model Sparsity Stats Corpus : Row Non-Zero Mean: 94.37991142272949, Row Sparsity Mean: 0.9969078302383423 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 62.97999954223633, row_sparsity_mean: 0.9979365468025208 1/1 [00:04<00:00, 4.12s/it] Corpus info: num_rows: 5046, num_cols: 30522, row_non_zero_mean: 63.394371032714844, row_sparsity_mean: 0.9979230165481567 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Evaluating NanoMSMARCO Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 48.099998474121094, row_sparsity_mean: 0.99842399358749391/1 [00:19<00:00, 19.40s/it] Corpus info: num_rows: 5043, num_cols: 30522, row_non_zero_mean: 125.38131713867188, row_sparsity_mean: 0.9958921670913696 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Average Querie: num_rows: 50.0, num_cols: 30522.0, row_non_zero_mean: 55.53999900817871, row_sparsity_mean: 0.9981802701950073 Average Corpus: num_rows: 5044.5, num_cols: 30522.0, row_non_zero_mean: 94.38784408569336, row_sparsity_mean: 0.9969075918197632 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
from __future__ import annotations from typing import Any, Callable, List, Tuple, Type, Union import PIL.Image from torchvision import datapoints from torchvision._utils import sequence_to_str from torchvision.transforms.v2.functional import get_dimensions, get_spatial_size, is_simple_tensor def query_bounding_boxes(flat_inputs: List[Any]) -> datapoints.BoundingBoxes: bounding_boxes = [inpt for inpt in flat_inputs if isinstance(inpt, datapoints.BoundingBoxes)] if not bounding_boxes: raise TypeError("No bounding box was found in the sample") elif len(bounding_boxes) > 1: raise ValueError("Found multiple bounding boxes in the sample") return bounding_boxes.pop() def query_chw(flat_inputs: List[Any]) -> Tuple[int, int, int]: chws = { tuple(get_dimensions(inpt)) for inpt in flat_inputs if isinstance(inpt, (datapoints.Image, PIL.Image.Image, datapoints.Video)) or is_simple_tensor(inpt) } if not chws: raise TypeError("No image or video was found in the sample") elif len(chws) > 1: raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}") c, h, w = chws.pop() return c, h, w def query_spatial_size(flat_inputs: List[Any]) -> Tuple[int, int]: sizes = { tuple(get_spatial_size(inpt)) for inpt in flat_inputs if isinstance( inpt, (datapoints.Image, PIL.Image.Image, datapoints.Video, datapoints.Mask, datapoints.BoundingBoxes) ) or is_simple_tensor(inpt) } if not sizes: raise TypeError("No image, video, mask or bounding box was found in the sample") elif len(sizes) > 1: raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}") h, w = sizes.pop() return h, w def check_type(obj: Any, types_or_checks: Tuple[Union[Type, Callable[[Any], bool]], ...]) -> bool: for type_or_check in types_or_checks: if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj): return True return False def has_any(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for inpt in flat_inputs: if check_type(inpt, types_or_checks): return True return False def has_all(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for type_or_check in types_or_checks: for inpt in flat_inputs: if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt): break else: return False return True
from __future__ import annotations from typing import Any, Callable, List, Tuple, Type, Union import PIL.Image from torchvision import datapoints from torchvision._utils import sequence_to_str from torchvision.transforms.v2.functional import get_dimensions, get_spatial_size, is_simple_tensor def query_bounding_box(flat_inputs: List[Any]) -> datapoints.BoundingBox: bounding_boxes = [inpt for inpt in flat_inputs if isinstance(inpt, datapoints.BoundingBox)] if not bounding_boxes: raise TypeError("No bounding box was found in the sample") elif len(bounding_boxes) > 1: raise ValueError("Found multiple bounding boxes in the sample") return bounding_boxes.pop() def query_chw(flat_inputs: List[Any]) -> Tuple[int, int, int]: chws = { tuple(get_dimensions(inpt)) for inpt in flat_inputs if isinstance(inpt, (datapoints.Image, PIL.Image.Image, datapoints.Video)) or is_simple_tensor(inpt) } if not chws: raise TypeError("No image or video was found in the sample") elif len(chws) > 1: raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}") c, h, w = chws.pop() return c, h, w def query_spatial_size(flat_inputs: List[Any]) -> Tuple[int, int]: sizes = { tuple(get_spatial_size(inpt)) for inpt in flat_inputs if isinstance( inpt, (datapoints.Image, PIL.Image.Image, datapoints.Video, datapoints.Mask, datapoints.BoundingBox) ) or is_simple_tensor(inpt) } if not sizes: raise TypeError("No image, video, mask or bounding box was found in the sample") elif len(sizes) > 1: raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}") h, w = sizes.pop() return h, w def check_type(obj: Any, types_or_checks: Tuple[Union[Type, Callable[[Any], bool]], ...]) -> bool: for type_or_check in types_or_checks: if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj): return True return False def has_any(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for inpt in flat_inputs: if check_type(inpt, types_or_checks): return True return False def has_all(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for type_or_check in types_or_checks: for inpt in flat_inputs: if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt): break else: return False return True
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf-8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf-8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyHubExecutor'] ) def test_cli_hub(uses): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', uses]) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port[0]}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port[0]}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina.constants import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo'), encoding='utf-8') as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyHubExecutor'] ) def test_cli_hub(uses): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', uses]) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port[0]}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port[0]}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina.constants import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
""" This script downloads the parallel sentences corpus and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The parallel sentences corpus is a crawl of transcripts from talks, which are translated to 100+ languages. The parallel sentences corpus cannot be downloaded automatically. It is available for research purposes only (CC-BY-NC). The training procedure can be found in the files make_multilingual.py. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import csv import gzip import os from tqdm.autonotebook import tqdm import sentence_transformers.util source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to dev_sentences = 1000 # Number of sentences we want to use for development download_url = "https://sbert.net/datasets/parallel-sentences.tsv.gz" # Specify parallel sentences URL here parallel_sentences_path = "../datasets/parallel-sentences.tsv.gz" # Path of the parallel-sentences.tsv.gz file. parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(parallel_sentences_path), exist_ok=True) if not os.path.exists(parallel_sentences_path): print("parallel-sentences.tsv.gz does not exists. Try to download from server") sentence_transformers.util.http_get(download_url, parallel_sentences_path) os.makedirs(parallel_sentences_folder, exist_ok=True) train_files = [] dev_files = [] files_to_create = [] for source_lang in source_languages: for target_lang in target_languages: output_filename_train = os.path.join( parallel_sentences_folder, f"talks-{source_lang}-{target_lang}-train.tsv.gz" ) output_filename_dev = os.path.join(parallel_sentences_folder, f"talks-{source_lang}-{target_lang}-dev.tsv.gz") train_files.append(output_filename_train) dev_files.append(output_filename_dev) if not os.path.exists(output_filename_train) or not os.path.exists(output_filename_dev): files_to_create.append( { "src_lang": source_lang, "trg_lang": target_lang, "fTrain": gzip.open(output_filename_train, "wt", encoding="utf8"), "fDev": gzip.open(output_filename_dev, "wt", encoding="utf8"), "devCount": 0, } ) if len(files_to_create) > 0: print( "Parallel sentences files {} do not exist. Create these files now".format( ", ".join(map(lambda x: x["src_lang"] + "-" + x["trg_lang"], files_to_create)) ) ) with gzip.open(parallel_sentences_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for line in tqdm(reader, desc="Sentences"): for outfile in files_to_create: src_text = line[outfile["src_lang"]].strip() trg_text = line[outfile["trg_lang"]].strip() if src_text != "" and trg_text != "": if outfile["devCount"] < dev_sentences: outfile["devCount"] += 1 fOut = outfile["fDev"] else: fOut = outfile["fTrain"] fOut.write(f"{src_text}\t{trg_text}\n") for outfile in files_to_create: outfile["fTrain"].close() outfile["fDev"].close() print("---DONE---")
""" This script downloads the parallel sentences corpus and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The parallel sentences corpus is a crawl of transcripts from talks, which are translated to 100+ languages. The parallel sentences corpus cannot be downloaded automatically. It is available for research purposes only (CC-BY-NC). The training procedure can be found in the files make_multilingual.py. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import csv import gzip import os from tqdm.autonotebook import tqdm import sentence_transformers.util source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to dev_sentences = 1000 # Number of sentences we want to use for development download_url = "https://sbert.net/datasets/parallel-sentences.tsv.gz" # Specify parallel sentences URL here parallel_sentences_path = "../datasets/parallel-sentences.tsv.gz" # Path of the parallel-sentences.tsv.gz file. parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(parallel_sentences_path), exist_ok=True) if not os.path.exists(parallel_sentences_path): print("parallel-sentences.tsv.gz does not exists. Try to download from server") sentence_transformers.util.http_get(download_url, parallel_sentences_path) os.makedirs(parallel_sentences_folder, exist_ok=True) train_files = [] dev_files = [] files_to_create = [] for source_lang in source_languages: for target_lang in target_languages: output_filename_train = os.path.join( parallel_sentences_folder, "talks-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) output_filename_dev = os.path.join( parallel_sentences_folder, "talks-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) train_files.append(output_filename_train) dev_files.append(output_filename_dev) if not os.path.exists(output_filename_train) or not os.path.exists(output_filename_dev): files_to_create.append( { "src_lang": source_lang, "trg_lang": target_lang, "fTrain": gzip.open(output_filename_train, "wt", encoding="utf8"), "fDev": gzip.open(output_filename_dev, "wt", encoding="utf8"), "devCount": 0, } ) if len(files_to_create) > 0: print( "Parallel sentences files {} do not exist. Create these files now".format( ", ".join(map(lambda x: x["src_lang"] + "-" + x["trg_lang"], files_to_create)) ) ) with gzip.open(parallel_sentences_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for line in tqdm(reader, desc="Sentences"): for outfile in files_to_create: src_text = line[outfile["src_lang"]].strip() trg_text = line[outfile["trg_lang"]].strip() if src_text != "" and trg_text != "": if outfile["devCount"] < dev_sentences: outfile["devCount"] += 1 fOut = outfile["fDev"] else: fOut = outfile["fTrain"] fOut.write("{}\t{}\n".format(src_text, trg_text)) for outfile in files_to_create: outfile["fTrain"].close() outfile["fDev"].close() print("---DONE---")
from .flair_text import FlairTextEncoder
from .flair_text import FlairTextEncoder
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDocument): integer: int inner_list: List class MMDoc(BaseDocument): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[Image] = None matches: Optional[DocumentArray] = None matches_with_same_id: Optional[DocumentArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) da3 = DocumentArray[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b']
import pytest from typing import Optional, List, Dict, Set from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDocument): integer: int l: List class MMDoc(BaseDocument): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[Image] = None matches: Optional[DocumentArray] = None matches_with_same_id: Optional[DocumentArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, l=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, l=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocumentArray[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.l == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocumentArray[MMDoc]([doc1, MMDoc()]) da2 = DocumentArray[MMDoc]([MMDoc(), doc2]) da3 = DocumentArray[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.l == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b']
from ._multi_channel import MVDR, PSD, RTFMVDR, SoudenMVDR from ._transforms import ( AmplitudeToDB, ComputeDeltas, Fade, FrequencyMasking, GriffinLim, InverseMelScale, InverseSpectrogram, LFCC, Loudness, MelScale, MelSpectrogram, MFCC, MuLawDecoding, MuLawEncoding, PitchShift, Resample, RNNTLoss, SlidingWindowCmn, SpectralCentroid, Spectrogram, TimeMasking, TimeStretch, Vad, Vol, ) __all__ = [ "AmplitudeToDB", "ComputeDeltas", "Fade", "FrequencyMasking", "GriffinLim", "InverseMelScale", "InverseSpectrogram", "LFCC", "Loudness", "MFCC", "MVDR", "MelScale", "MelSpectrogram", "MuLawDecoding", "MuLawEncoding", "PSD", "PitchShift", "RNNTLoss", "RTFMVDR", "Resample", "SlidingWindowCmn", "SoudenMVDR", "SpectralCentroid", "Spectrogram", "TimeMasking", "TimeStretch", "Vad", "Vol", ]
from ._multi_channel import MVDR, PSD, RTFMVDR, SoudenMVDR from ._transforms import ( AmplitudeToDB, ComputeDeltas, Fade, FrequencyMasking, GriffinLim, InverseMelScale, InverseSpectrogram, LFCC, MelScale, MelSpectrogram, MFCC, MuLawDecoding, MuLawEncoding, PitchShift, Resample, RNNTLoss, SlidingWindowCmn, SpectralCentroid, Spectrogram, TimeMasking, TimeStretch, Vad, Vol, ) __all__ = [ "AmplitudeToDB", "ComputeDeltas", "Fade", "FrequencyMasking", "GriffinLim", "InverseMelScale", "InverseSpectrogram", "LFCC", "MFCC", "MVDR", "MelScale", "MelSpectrogram", "MuLawDecoding", "MuLawEncoding", "PSD", "PitchShift", "RNNTLoss", "RTFMVDR", "Resample", "SlidingWindowCmn", "SoudenMVDR", "SpectralCentroid", "Spectrogram", "TimeMasking", "TimeStretch", "Vad", "Vol", ]
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, get_max_musa_memory, is_cuda_available, is_dipu_available, is_mlu_available, is_mps_available, is_musa_available, is_npu_available, is_npu_support_full_precision) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available', 'is_npu_available', 'is_dipu_available', 'get_max_musa_memory', 'is_musa_available', 'is_npu_support_full_precision' ]
# Copyright (c) OpenMMLab. All rights reserved. from .utils import (get_device, get_max_cuda_memory, is_cuda_available, is_dipu_available, is_mlu_available, is_mps_available, is_npu_available, is_npu_support_full_precision) __all__ = [ 'get_max_cuda_memory', 'get_device', 'is_cuda_available', 'is_mlu_available', 'is_mps_available', 'is_npu_available', 'is_dipu_available', 'is_npu_support_full_precision' ]
import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from docarray.utils._internal.pydantic import is_pydantic_v2 from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url: str): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
from sentence_transformers import SentenceTransformer from . import SentenceEvaluator import torch from torch.utils.data import DataLoader import logging from ..util import batch_to_device import os import csv logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset :param dataloader: the data for the evaluation """ self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] def __call__(self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) return accuracy
from . import SentenceEvaluator import torch from torch.utils.data import DataLoader import logging from ..util import batch_to_device import os import csv logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset :param dataloader: the data for the evaluation """ self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) return accuracy
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .mean_teacher_hook import MeanTeacherHook from .memory_profiler_hook import MemoryProfilerHook from .num_class_check_hook import NumClassCheckHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .utils import trigger_visualization_hook from .visualization_hook import DetVisualizationHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'DetVisualizationHook', 'NumClassCheckHook', 'MeanTeacherHook', 'trigger_visualization_hook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .mean_teacher_hook import MeanTeacherHook from .memory_profiler_hook import MemoryProfilerHook from .num_class_check_hook import NumClassCheckHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .visualization_hook import DetVisualizationHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'YOLOXModeSwitchHook', 'SyncNormHook', 'CheckInvalidLossHook', 'SetEpochInfoHook', 'MemoryProfilerHook', 'DetVisualizationHook', 'NumClassCheckHook', 'MeanTeacherHook' ]
_base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
"""Agent utils.""" from llama_index.core.llms import ChatMessage, TextBlock from typing import List from llama_index.core.agent.types import TaskStep from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.memory import BaseMemory def add_user_step_to_memory( step: TaskStep, memory: BaseMemory, verbose: bool = False ) -> None: """Add user step to memory.""" user_message = ChatMessage(content=step.input, role=MessageRole.USER) memory.put(user_message) if verbose: print(f"Added user message to memory: {step.input}") def messages_to_xml_format(messages: List[ChatMessage]) -> ChatMessage: blocks = [TextBlock(text="<current_conversation>\n")] for message in messages: blocks.append(TextBlock(text=f"\t<{message.role.value}>\n")) for block in message.blocks: if isinstance(block, TextBlock): blocks.append(TextBlock(text=f"\t\t<message>{block.text}</message>\n")) blocks.append(TextBlock(text=f"\t</{message.role.value}>\n")) blocks.append(TextBlock(text="</current_conversation>\n\n")) blocks.append( TextBlock( text="Given the conversation, format the output according to the provided schema." ) ) return ChatMessage(role="user", blocks=blocks)
"""Agent utils.""" from llama_index.core.agent.types import TaskStep from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.memory import BaseMemory def add_user_step_to_memory( step: TaskStep, memory: BaseMemory, verbose: bool = False ) -> None: """Add user step to memory.""" user_message = ChatMessage(content=step.input, role=MessageRole.USER) memory.put(user_message) if verbose: print(f"Added user message to memory: {step.input}")
"""Embedded Tables Retriever w/ Unstructured.IO.""" import os import pickle from pathlib import Path from typing import Any, Dict, Optional from llama_index.core import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.node_parser import UnstructuredElementNodeParser from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import RecursiveRetriever from llama_index.readers.file.flat import FlatReader class EmbeddedTablesUnstructuredRetrieverPack(BaseLlamaPack): """ Embedded Tables + Unstructured.io Retriever pack. Use unstructured.io to parse out embedded tables from an HTML document, build a node graph, and then run our recursive retriever against that. **NOTE**: must take in a single HTML file. """ def __init__( self, html_path: str, nodes_save_path: Optional[str] = None, **kwargs: Any, ) -> None: """Init params.""" self.reader = FlatReader() docs = self.reader.load_data(Path(html_path)) self.node_parser = UnstructuredElementNodeParser() if nodes_save_path is None or not os.path.exists(nodes_save_path): raw_nodes = self.node_parser.get_nodes_from_documents(docs) pickle.dump(raw_nodes, open(nodes_save_path, "wb")) else: raw_nodes = pickle.load(open(nodes_save_path, "rb")) base_nodes, node_mappings = self.node_parser.get_base_nodes_and_mappings( raw_nodes ) # construct top-level vector index + query engine vector_index = VectorStoreIndex(base_nodes) vector_retriever = vector_index.as_retriever(similarity_top_k=1) self.recursive_retriever = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever}, node_dict=node_mappings, verbose=True, ) self.query_engine = RetrieverQueryEngine.from_args(self.recursive_retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "node_parser": self.node_parser, "recursive_retriever": self.recursive_retriever, "query_engine": self.query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""Embedded Tables Retriever w/ Unstructured.IO.""" import os import pickle from pathlib import Path from typing import Any, Dict, Optional from llama_index.core import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.node_parser import UnstructuredElementNodeParser from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import RecursiveRetriever from llama_index.readers.file.flat import FlatReader class EmbeddedTablesUnstructuredRetrieverPack(BaseLlamaPack): """Embedded Tables + Unstructured.io Retriever pack. Use unstructured.io to parse out embedded tables from an HTML document, build a node graph, and then run our recursive retriever against that. **NOTE**: must take in a single HTML file. """ def __init__( self, html_path: str, nodes_save_path: Optional[str] = None, **kwargs: Any, ) -> None: """Init params.""" self.reader = FlatReader() docs = self.reader.load_data(Path(html_path)) self.node_parser = UnstructuredElementNodeParser() if nodes_save_path is None or not os.path.exists(nodes_save_path): raw_nodes = self.node_parser.get_nodes_from_documents(docs) pickle.dump(raw_nodes, open(nodes_save_path, "wb")) else: raw_nodes = pickle.load(open(nodes_save_path, "rb")) base_nodes, node_mappings = self.node_parser.get_base_nodes_and_mappings( raw_nodes ) # construct top-level vector index + query engine vector_index = VectorStoreIndex(base_nodes) vector_retriever = vector_index.as_retriever(similarity_top_k=1) self.recursive_retriever = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever}, node_dict=node_mappings, verbose=True, ) self.query_engine = RetrieverQueryEngine.from_args(self.recursive_retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "node_parser": self.node_parser, "recursive_retriever": self.recursive_retriever, "query_engine": self.query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: add_voter.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0f\x61\x64\x64_voter.proto\"-\n\rAwaitResponse\x12\r\n\x05\x65rror\x18\x01 \x01(\t\x12\r\n\x05index\x18\x02 \x01(\x04\"\x10\n\x0e\x46orgetResponse\"!\n\x06\x46uture\x12\x17\n\x0foperation_token\x18\x01 \x01(\t\"F\n\x0f\x41\x64\x64VoterRequest\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07\x61\x64\x64ress\x18\x02 \x01(\t\x12\x16\n\x0eprevious_index\x18\x03 \x01(\x04\x32~\n\tRaftAdmin\x12\'\n\x08\x41\x64\x64Voter\x12\x10.AddVoterRequest\x1a\x07.Future\"\x00\x12\"\n\x05\x41wait\x12\x07.Future\x1a\x0e.AwaitResponse\"\x00\x12$\n\x06\x46orget\x12\x07.Future\x1a\x0f.ForgetResponse\"\x00\x62\x06proto3' ) _AWAITRESPONSE = DESCRIPTOR.message_types_by_name['AwaitResponse'] _FORGETRESPONSE = DESCRIPTOR.message_types_by_name['ForgetResponse'] _FUTURE = DESCRIPTOR.message_types_by_name['Future'] _ADDVOTERREQUEST = DESCRIPTOR.message_types_by_name['AddVoterRequest'] AwaitResponse = _reflection.GeneratedProtocolMessageType( 'AwaitResponse', (_message.Message,), { 'DESCRIPTOR': _AWAITRESPONSE, '__module__': 'add_voter_pb2', # @@protoc_insertion_point(class_scope:AwaitResponse) }, ) _sym_db.RegisterMessage(AwaitResponse) ForgetResponse = _reflection.GeneratedProtocolMessageType( 'ForgetResponse', (_message.Message,), { 'DESCRIPTOR': _FORGETRESPONSE, '__module__': 'add_voter_pb2', # @@protoc_insertion_point(class_scope:ForgetResponse) }, ) _sym_db.RegisterMessage(ForgetResponse) Future = _reflection.GeneratedProtocolMessageType( 'Future', (_message.Message,), { 'DESCRIPTOR': _FUTURE, '__module__': 'add_voter_pb2', # @@protoc_insertion_point(class_scope:Future) }, ) _sym_db.RegisterMessage(Future) AddVoterRequest = _reflection.GeneratedProtocolMessageType( 'AddVoterRequest', (_message.Message,), { 'DESCRIPTOR': _ADDVOTERREQUEST, '__module__': 'add_voter_pb2', # @@protoc_insertion_point(class_scope:AddVoterRequest) }, ) _sym_db.RegisterMessage(AddVoterRequest) _RAFTADMIN = DESCRIPTOR.services_by_name['RaftAdmin'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _AWAITRESPONSE._serialized_start = 19 _AWAITRESPONSE._serialized_end = 64 _FORGETRESPONSE._serialized_start = 66 _FORGETRESPONSE._serialized_end = 82 _FUTURE._serialized_start = 84 _FUTURE._serialized_end = 117 _ADDVOTERREQUEST._serialized_start = 119 _ADDVOTERREQUEST._serialized_end = 189 _RAFTADMIN._serialized_start = 191 _RAFTADMIN._serialized_end = 317 # @@protoc_insertion_point(module_scope)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: add_voter.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x61\x64\x64_voter.proto\"-\n\rAwaitResponse\x12\r\n\x05\x65rror\x18\x01 \x01(\t\x12\r\n\x05index\x18\x02 \x01(\x04\"\x10\n\x0e\x46orgetResponse\"!\n\x06\x46uture\x12\x17\n\x0foperation_token\x18\x01 \x01(\t\"F\n\x0f\x41\x64\x64VoterRequest\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07\x61\x64\x64ress\x18\x02 \x01(\t\x12\x16\n\x0eprevious_index\x18\x03 \x01(\x04\x32~\n\tRaftAdmin\x12\'\n\x08\x41\x64\x64Voter\x12\x10.AddVoterRequest\x1a\x07.Future\"\x00\x12\"\n\x05\x41wait\x12\x07.Future\x1a\x0e.AwaitResponse\"\x00\x12$\n\x06\x46orget\x12\x07.Future\x1a\x0f.ForgetResponse\"\x00\x62\x06proto3') _AWAITRESPONSE = DESCRIPTOR.message_types_by_name['AwaitResponse'] _FORGETRESPONSE = DESCRIPTOR.message_types_by_name['ForgetResponse'] _FUTURE = DESCRIPTOR.message_types_by_name['Future'] _ADDVOTERREQUEST = DESCRIPTOR.message_types_by_name['AddVoterRequest'] AwaitResponse = _reflection.GeneratedProtocolMessageType('AwaitResponse', (_message.Message,), { 'DESCRIPTOR' : _AWAITRESPONSE, '__module__' : 'add_voter_pb2' # @@protoc_insertion_point(class_scope:AwaitResponse) }) _sym_db.RegisterMessage(AwaitResponse) ForgetResponse = _reflection.GeneratedProtocolMessageType('ForgetResponse', (_message.Message,), { 'DESCRIPTOR' : _FORGETRESPONSE, '__module__' : 'add_voter_pb2' # @@protoc_insertion_point(class_scope:ForgetResponse) }) _sym_db.RegisterMessage(ForgetResponse) Future = _reflection.GeneratedProtocolMessageType('Future', (_message.Message,), { 'DESCRIPTOR' : _FUTURE, '__module__' : 'add_voter_pb2' # @@protoc_insertion_point(class_scope:Future) }) _sym_db.RegisterMessage(Future) AddVoterRequest = _reflection.GeneratedProtocolMessageType('AddVoterRequest', (_message.Message,), { 'DESCRIPTOR' : _ADDVOTERREQUEST, '__module__' : 'add_voter_pb2' # @@protoc_insertion_point(class_scope:AddVoterRequest) }) _sym_db.RegisterMessage(AddVoterRequest) _RAFTADMIN = DESCRIPTOR.services_by_name['RaftAdmin'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _AWAITRESPONSE._serialized_start=19 _AWAITRESPONSE._serialized_end=64 _FORGETRESPONSE._serialized_start=66 _FORGETRESPONSE._serialized_end=82 _FUTURE._serialized_start=84 _FUTURE._serialized_end=117 _ADDVOTERREQUEST._serialized_start=119 _ADDVOTERREQUEST._serialized_end=189 _RAFTADMIN._serialized_start=191 _RAFTADMIN._serialized_end=317 # @@protoc_insertion_point(module_scope)
# Copyright (c) OpenMMLab. All rights reserved. from torch.autograd import Function from torch.nn import functional as F class SigmoidGeometricMean(Function): """Forward and backward function of geometric mean of two sigmoid functions. This implementation with analytical gradient function substitutes the autograd function of (x.sigmoid() * y.sigmoid()).sqrt(). The original implementation incurs none during gradient backprapagation if both x and y are very small values. """ @staticmethod def forward(ctx, x, y): x_sigmoid = x.sigmoid() y_sigmoid = y.sigmoid() z = (x_sigmoid * y_sigmoid).sqrt() ctx.save_for_backward(x_sigmoid, y_sigmoid, z) return z @staticmethod def backward(ctx, grad_output): x_sigmoid, y_sigmoid, z = ctx.saved_tensors grad_x = grad_output * z * (1 - x_sigmoid) / 2 grad_y = grad_output * z * (1 - y_sigmoid) / 2 return grad_x, grad_y sigmoid_geometric_mean = SigmoidGeometricMean.apply def interpolate_as(source, target, mode='bilinear', align_corners=False): """Interpolate the `source` to the shape of the `target`. The `source` must be a Tensor, but the `target` can be a Tensor or a np.ndarray with the shape (..., target_h, target_w). Args: source (Tensor): A 3D/4D Tensor with the shape (N, H, W) or (N, C, H, W). target (Tensor | np.ndarray): The interpolation target with the shape (..., target_h, target_w). mode (str): Algorithm used for interpolation. The options are the same as those in F.interpolate(). Default: ``'bilinear'``. align_corners (bool): The same as the argument in F.interpolate(). Returns: Tensor: The interpolated source Tensor. """ assert len(target.shape) >= 2 def _interpolate_as(source, target, mode='bilinear', align_corners=False): """Interpolate the `source` (4D) to the shape of the `target`.""" target_h, target_w = target.shape[-2:] source_h, source_w = source.shape[-2:] if target_h != source_h or target_w != source_w: source = F.interpolate( source, size=(target_h, target_w), mode=mode, align_corners=align_corners) return source if len(source.shape) == 3: source = source[:, None, :, :] source = _interpolate_as(source, target, mode, align_corners) return source[:, 0, :, :] else: return _interpolate_as(source, target, mode, align_corners)
# Copyright (c) OpenMMLab. All rights reserved. from torch.nn import functional as F def interpolate_as(source, target, mode='bilinear', align_corners=False): """Interpolate the `source` to the shape of the `target`. The `source` must be a Tensor, but the `target` can be a Tensor or a np.ndarray with the shape (..., target_h, target_w). Args: source (Tensor): A 3D/4D Tensor with the shape (N, H, W) or (N, C, H, W). target (Tensor | np.ndarray): The interpolation target with the shape (..., target_h, target_w). mode (str): Algorithm used for interpolation. The options are the same as those in F.interpolate(). Default: ``'bilinear'``. align_corners (bool): The same as the argument in F.interpolate(). Returns: Tensor: The interpolated source Tensor. """ assert len(target.shape) >= 2 def _interpolate_as(source, target, mode='bilinear', align_corners=False): """Interpolate the `source` (4D) to the shape of the `target`.""" target_h, target_w = target.shape[-2:] source_h, source_w = source.shape[-2:] if target_h != source_h or target_w != source_w: source = F.interpolate( source, size=(target_h, target_w), mode=mode, align_corners=align_corners) return source if len(source.shape) == 3: source = source[:, None, :, :] source = _interpolate_as(source, target, mode, align_corners) return source[:, 0, :, :] else: return _interpolate_as(source, target, mode, align_corners)
import pytest from llama_index.core.workflow.context import Context from llama_index.core.workflow.decorators import step from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.service import ServiceManager, ServiceNotFoundError from llama_index.core.workflow.workflow import Workflow class ServiceWorkflow(Workflow): """This wokflow is only responsible to generate a number, it knows nothing about the caller.""" def __init__(self, *args, **kwargs) -> None: self._the_answer = kwargs.pop("the_answer", 42) super().__init__(*args, **kwargs) @step async def generate(self, ev: StartEvent) -> StopEvent: return StopEvent(result=self._the_answer) class NumGenerated(Event): """To be used in the dummy workflow below.""" num: int class DummyWorkflow(Workflow): """ This workflow needs a number, and it calls another workflow to get one. A service named "service_workflow" must be added to `DummyWorkflow` for the step to be able to use it (see below). This step knows nothing about the other workflow, it gets an instance and it only knows it has to call `run` on that instance. """ @step async def get_a_number( self, ev: StartEvent, ctx: Context, service_workflow: ServiceWorkflow = ServiceWorkflow(), ) -> NumGenerated: res = await service_workflow.run() return NumGenerated(num=int(res)) @step async def multiply(self, ev: NumGenerated) -> StopEvent: return StopEvent(ev.num * 2) @pytest.mark.asyncio() async def test_e2e(): wf = DummyWorkflow() # We are responsible for passing the ServiceWorkflow instances to the dummy workflow # and give it a name, in this case "service_workflow" wf.add_workflows(service_workflow=ServiceWorkflow(the_answer=1337)) res = await wf.run() assert res == 2674 @pytest.mark.asyncio() async def test_default_value_for_service(): wf = DummyWorkflow() # We don't add any workflow to leverage the default value defined by the user res = await wf.run() assert res == 84 def test_service_manager_add(workflow): s = ServiceManager() s.add("test_id", workflow) assert s._services["test_id"] == workflow def test_service_manager_get(workflow): s = ServiceManager() s._services["test_id"] = workflow assert s.get("test_id") == workflow with pytest.raises(ServiceNotFoundError): s.get("not_found")
import pytest from llama_index.core.workflow.decorators import step from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.workflow import Workflow from llama_index.core.workflow.context import Context from llama_index.core.workflow.service import ServiceManager, ServiceNotFoundError class ServiceWorkflow(Workflow): """This wokflow is only responsible to generate a number, it knows nothing about the caller.""" def __init__(self, *args, **kwargs) -> None: self._the_answer = kwargs.pop("the_answer", 42) super().__init__(*args, **kwargs) @step async def generate(self, ev: StartEvent) -> StopEvent: return StopEvent(result=self._the_answer) class NumGenerated(Event): """To be used in the dummy workflow below.""" num: int class DummyWorkflow(Workflow): """ This workflow needs a number, and it calls another workflow to get one. A service named "service_workflow" must be added to `DummyWorkflow` for the step to be able to use it (see below). This step knows nothing about the other workflow, it gets an instance and it only knows it has to call `run` on that instance. """ @step async def get_a_number( self, ev: StartEvent, ctx: Context, service_workflow: ServiceWorkflow = ServiceWorkflow(), ) -> NumGenerated: res = await service_workflow.run() return NumGenerated(num=int(res)) @step async def multiply(self, ev: NumGenerated) -> StopEvent: return StopEvent(ev.num * 2) @pytest.mark.asyncio() async def test_e2e(): wf = DummyWorkflow() # We are responsible for passing the ServiceWorkflow instances to the dummy workflow # and give it a name, in this case "service_workflow" wf.add_workflows(service_workflow=ServiceWorkflow(the_answer=1337)) res = await wf.run() assert res == 2674 @pytest.mark.asyncio() async def test_default_value_for_service(): wf = DummyWorkflow() # We don't add any workflow to leverage the default value defined by the user res = await wf.run() assert res == 84 def test_service_manager_add(): s = ServiceManager() w = Workflow() s.add("test_id", w) assert s._services["test_id"] == w def test_service_manager_get(): s = ServiceManager() w = Workflow() s._services["test_id"] = w assert s.get("test_id") == w with pytest.raises(ServiceNotFoundError): s.get("not_found")
# there's a rather large issue with the pants build, it's only running tests # with sources that are imported, which causes pytest markers to not be registered # so we need to import pytest_asyncio manually here to ensure that the markers # are registered import pytest_asyncio # noqa: F401 # Set the default fixture loop scope explicitly to avoid warnings pytest_asyncio.DEFAULT_FIXTURE_LOOP_SCOPE = "function"
# there's a rather large issue with the pants build, it's only running tests # with sources that are imported, which causes pytest markers to not be registered # so we need to import pytest_asyncio manually here to ensure that the markers # are registered import pytest_asyncio # noqa: F401
import multiprocessing import re from copy import deepcopy from functools import partial from typing import TYPE_CHECKING from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.parsers.helper import _update_gateway_args if TYPE_CHECKING: # pragma: no cover from argparse import Namespace def _get_event(obj) -> multiprocessing.Event: if isinstance(obj, multiprocessing.Process) or isinstance( obj, multiprocessing.context.ForkProcess ): return multiprocessing.Event() elif isinstance(obj, multiprocessing.context.SpawnProcess): return multiprocessing.get_context('spawn').Event() else: raise TypeError(f'{obj} is not an instance of "multiprocessing.Process"') class ConditionalEvent: """ :class:`ConditionalEvent` provides a common interface to an event (multiprocessing or threading event) that gets triggered when any of the events provided in input is triggered (OR logic) :param events_list: The list of events that compose this composable event """ def __init__(self, events_list): super().__init__() self.event = None self.event = multiprocessing.synchronize.Event( ctx=multiprocessing.get_context() ) self.event_list = events_list for e in events_list: self._setup(e, self._state_changed) self._state_changed() def _state_changed(self): bools = [e.is_set() for e in self.event_list] if any(bools): self.event.set() else: self.event.clear() def _custom_set(self, e): e._set() e._state_changed() def _custom_clear(self, e): e._clear() e._state_changed() def _setup(self, e, changed_callback): e._set = e.set e._clear = e.clear e._state_changed = changed_callback e.set = partial(self._custom_set, e) e.clear = partial(self._custom_clear, e) def update_runtime_cls(args) -> 'Namespace': """Get runtime_cls as a string from args :param args: pod/deployment namespace args :return: runtime class as a string """ _args = args if _args.runtime_cls == 'WorkerRuntime' and is_valid_huburi(_args.uses): _hub_args = deepcopy(_args) _hub_args.uri = _args.uses _hub_args.no_usage = True _args.uses = HubIO(_hub_args).pull() if hasattr(_args, 'protocol') and _args.pod_role == PodRoleType.GATEWAY: _update_gateway_args(_args) if _args.pod_role == PodRoleType.HEAD: _args.runtime_cls = 'HeadRuntime' return _args
import multiprocessing import re from copy import deepcopy from functools import partial from typing import TYPE_CHECKING from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.parsers.helper import _update_gateway_args if TYPE_CHECKING: # pragma: no cover from argparse import Namespace def _get_event(obj) -> multiprocessing.Event: if isinstance(obj, multiprocessing.Process) or isinstance( obj, multiprocessing.context.ForkProcess ): return multiprocessing.Event() elif isinstance(obj, multiprocessing.context.SpawnProcess): return multiprocessing.get_context('spawn').Event() else: raise TypeError(f'{obj} is not an instance of "multiprocessing.Process"') class ConditionalEvent: """ :class:`ConditionalEvent` provides a common interface to an event (multiprocessing or threading event) that gets triggered when any of the events provided in input is triggered (OR logic) :param events_list: The list of events that compose this composable event """ def __init__(self, events_list): super().__init__() self.event = None self.event = multiprocessing.synchronize.Event( ctx=multiprocessing.get_context() ) self.event_list = events_list for e in events_list: self._setup(e, self._state_changed) self._state_changed() def _state_changed(self): bools = [e.is_set() for e in self.event_list] if any(bools): self.event.set() else: self.event.clear() def _custom_set(self, e): e._set() e._state_changed() def _custom_clear(self, e): e._clear() e._state_changed() def _setup(self, e, changed_callback): e._set = e.set e._clear = e.clear e._state_changed = changed_callback e.set = partial(self._custom_set, e) e.clear = partial(self._custom_clear, e) def update_runtime_cls(args, copy=False) -> 'Namespace': """Get runtime_cls as a string from args :param args: pod/deployment namespace args :param copy: True if args shouldn't be modified in-place :return: runtime class as a string """ _args = deepcopy(args) if copy else args if _args.runtime_cls == 'WorkerRuntime' and is_valid_huburi(_args.uses): _hub_args = deepcopy(_args) _hub_args.uri = _args.uses _hub_args.no_usage = True _args.uses = HubIO(_hub_args).pull() if hasattr(_args, 'protocol') and _args.pod_role == PodRoleType.GATEWAY: _update_gateway_args(_args) if _args.pod_role == PodRoleType.HEAD: _args.runtime_cls = 'HeadRuntime' return _args
from typing import TYPE_CHECKING, Any, Dict, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library from docarray.utils._internal.pydantic import is_pydantic_v2 if is_pydantic_v2: from pydantic import model_validator if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] = Field( description='URL to a (potentially remote) image file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true', default=None, ) tensor: Optional[ImageTensor] = Field( description='Tensor object of the image which can be specifed to one of `ImageNdArray`, `ImageTorchTensor`, `ImageTensorflowTensor`.', default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the image.', example=[1, 0, 1], default=None, ) bytes_: Optional[ImageBytes] = Field( description='Bytes object of the image which is an instance of `ImageBytes`.', default=None, ) @classmethod def _validate(cls, value) -> Dict[str, Any]: if isinstance(value, str): value = dict(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = dict(tensor=value) elif isinstance(value, bytes): value = dict(byte=value) return value if is_pydantic_v2: @model_validator(mode='before') @classmethod def validate_model_before(cls, value): return cls._validate(value) else: @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: return super().validate(cls._validate(value))
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] = Field( description='URL to a (potentially remote) image file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true', default=None, ) tensor: Optional[ImageTensor] = Field( description='Tensor object of the image which can be specifed to one of `ImageNdArray`, `ImageTorchTensor`, `ImageTensorflowTensor`.', default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the image.', example=[1, 0, 1], default=None, ) bytes_: Optional[ImageBytes] = Field( description='Bytes object of the image which is an instance of `ImageBytes`.', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing `max_iterations`. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from scipy import stats from sklearn import datasets from sklearn.metrics import classification_report, confusion_matrix from sklearn.semi_supervised import LabelSpreading digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 40 max_iterations = 5 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(max_iterations): if len(unlabeled_indices) == 0: print("No unlabeled items left to label.") break y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = LabelSpreading(gamma=0.25, max_iter=20) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Iteration %i %s" % (i, 70 * "_")) print( "Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples) ) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # select up to 5 digit examples that the classifier is most uncertain about uncertainty_index = np.argsort(pred_entropies)[::-1] uncertainty_index = uncertainty_index[ np.isin(uncertainty_index, unlabeled_indices) ][:5] # keep track of indices that we get labels for delete_indices = np.array([], dtype=int) # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: f.text( 0.05, (1 - (i + 1) * 0.183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10, ) for index, image_index in enumerate(uncertainty_index): image = images[image_index] # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r, interpolation="none") sub.set_title( "predict: %i\ntrue: %i" % (lp_model.transduction_[image_index], y[image_index]), size=10, ) sub.axis("off") # labeling 5 points, remote from labeled set (delete_index,) = (unlabeled_indices == image_index).nonzero() delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += len(uncertainty_index) f.suptitle( ( "Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model." ), y=1.15, ) plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2, hspace=0.85) plt.show()
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing `max_iterations`. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from scipy import stats from sklearn import datasets from sklearn.metrics import classification_report, confusion_matrix from sklearn.semi_supervised import LabelSpreading digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 40 max_iterations = 5 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(max_iterations): if len(unlabeled_indices) == 0: print("No unlabeled items left to label.") break y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = LabelSpreading(gamma=0.25, max_iter=20) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Iteration %i %s" % (i, 70 * "_")) print( "Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples) ) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # select up to 5 digit examples that the classifier is most uncertain about uncertainty_index = np.argsort(pred_entropies)[::-1] uncertainty_index = uncertainty_index[ np.isin(uncertainty_index, unlabeled_indices) ][:5] # keep track of indices that we get labels for delete_indices = np.array([], dtype=int) # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: f.text( 0.05, (1 - (i + 1) * 0.183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10, ) for index, image_index in enumerate(uncertainty_index): image = images[image_index] # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r, interpolation="none") sub.set_title( "predict: %i\ntrue: %i" % (lp_model.transduction_[image_index], y[image_index]), size=10, ) sub.axis("off") # labeling 5 points, remote from labeled set (delete_index,) = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += len(uncertainty_index) f.suptitle( ( "Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model." ), y=1.15, ) plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2, hspace=0.85) plt.show()
from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) __all__ = ["get_bolded_text", "get_color_mapping", "get_colored_text", "print_text"]
from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) __all__ = ["get_color_mapping", "get_colored_text", "get_bolded_text", "print_text"]
_base_ = './mask-rcnn_r50-caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = './mask_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
# Copyright (c) OpenMMLab. All rights reserved. import argparse import warnings from mmcv import Config, DictAction def parse_args(): parser = argparse.ArgumentParser(description='Print the whole config') parser.add_argument('config', help='config file path') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) print(f'Config:\n{cfg.pretty_text}') if __name__ == '__main__': main()
import argparse import warnings from mmcv import Config, DictAction def parse_args(): parser = argparse.ArgumentParser(description='Print the whole config') parser.add_argument('config', help='config file path') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) print(f'Config:\n{cfg.pretty_text}') if __name__ == '__main__': main()
# coding: utf-8 """Find the path to xgboost dynamic library files.""" import os import platform import sys from typing import List class XGBoostLibraryNotFound(Exception): """Error thrown by when xgboost is not found""" def find_lib_path() -> List[str]: """Find the path to xgboost dynamic library files. Returns ------- lib_path List of all found library path to xgboost """ curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) dll_path = [ # normal, after installation `lib` is copied into Python package tree. os.path.join(curr_path, "lib"), # editable installation, no copying is performed. os.path.join(curr_path, os.path.pardir, os.path.pardir, "lib"), # use libxgboost from a system prefix, if available. This should be the last # option. os.path.join(sys.base_prefix, "lib"), ] if sys.platform == "win32": # On Windows, Conda may install libs in different paths dll_path.extend( [ os.path.join(sys.base_prefix, "bin"), os.path.join(sys.base_prefix, "Library"), os.path.join(sys.base_prefix, "Library", "bin"), os.path.join(sys.base_prefix, "Library", "lib"), os.path.join(sys.base_prefix, "Library", "mingw-w64"), os.path.join(sys.base_prefix, "Library", "mingw-w64", "bin"), os.path.join(sys.base_prefix, "Library", "mingw-w64", "lib"), ] ) dll_path = [os.path.join(p, "xgboost.dll") for p in dll_path] elif sys.platform.startswith(("linux", "freebsd", "emscripten")): dll_path = [os.path.join(p, "libxgboost.so") for p in dll_path] elif sys.platform == "darwin": dll_path = [os.path.join(p, "libxgboost.dylib") for p in dll_path] elif sys.platform == "cygwin": dll_path = [os.path.join(p, "cygxgboost.dll") for p in dll_path] if platform.system() == "OS400": dll_path = [os.path.join(p, "libxgboost.so") for p in dll_path] lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)] # XGBOOST_BUILD_DOC is defined by sphinx conf. if not lib_path and not os.environ.get("XGBOOST_BUILD_DOC", False): link = "https://xgboost.readthedocs.io/en/stable/install.html" msg = ( "Cannot find XGBoost Library in the candidate path. " + "List of candidates:\n- " + ("\n- ".join(dll_path)) + "\nXGBoost Python package path: " + curr_path + "\nsys.base_prefix: " + sys.base_prefix + "\nSee: " + link + " for installing XGBoost." ) raise XGBoostLibraryNotFound(msg) return lib_path
# coding: utf-8 """Find the path to xgboost dynamic library files.""" import os import platform import sys from typing import List class XGBoostLibraryNotFound(Exception): """Error thrown by when xgboost is not found""" def find_lib_path() -> List[str]: """Find the path to xgboost dynamic library files. Returns ------- lib_path List of all found library path to xgboost """ curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) dll_path = [ # normal, after installation `lib` is copied into Python package tree. os.path.join(curr_path, "lib"), # editable installation, no copying is performed. os.path.join(curr_path, os.path.pardir, os.path.pardir, "lib"), # use libxgboost from a system prefix, if available. This should be the last # option. os.path.join(sys.base_prefix, "lib"), ] if sys.platform == "win32": # On Windows, Conda may install libs in different paths dll_path.extend( [ os.path.join(sys.base_prefix, "bin"), os.path.join(sys.base_prefix, "Library"), os.path.join(sys.base_prefix, "Library", "bin"), os.path.join(sys.base_prefix, "Library", "lib"), ] ) dll_path = [os.path.join(p, "xgboost.dll") for p in dll_path] elif sys.platform.startswith(("linux", "freebsd", "emscripten")): dll_path = [os.path.join(p, "libxgboost.so") for p in dll_path] elif sys.platform == "darwin": dll_path = [os.path.join(p, "libxgboost.dylib") for p in dll_path] elif sys.platform == "cygwin": dll_path = [os.path.join(p, "cygxgboost.dll") for p in dll_path] if platform.system() == "OS400": dll_path = [os.path.join(p, "libxgboost.so") for p in dll_path] lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)] # XGBOOST_BUILD_DOC is defined by sphinx conf. if not lib_path and not os.environ.get("XGBOOST_BUILD_DOC", False): link = "https://xgboost.readthedocs.io/en/stable/install.html" msg = ( "Cannot find XGBoost Library in the candidate path. " + "List of candidates:\n- " + ("\n- ".join(dll_path)) + "\nXGBoost Python package path: " + curr_path + "\nsys.base_prefix: " + sys.base_prefix + "\nSee: " + link + " for installing XGBoost." ) raise XGBoostLibraryNotFound(msg) return lib_path
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_metrics_cache = test_hf_cache_home / "metrics" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE", str(test_hf_metrics_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) def pytest_configure(config): config.addinivalue_line("markers", "torchaudio_latest: mark test to run with torchaudio>=0.12") @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_metrics_cache = test_hf_cache_home / "metrics" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE", str(test_hf_metrics_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
_base_ = 'mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
_base_ = 'mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' fp16 = dict(loss_scale=512.)
import os from pathlib import Path from typing import List, Tuple, Union from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import load_librispeech_item from torchaudio.datasets.utils import extract_archive _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] """ if subset == "10min": files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio) ] elif subset in ["1h", "10h"]: files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio) ] if subset == "10h": files_paths += [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("9h/*/*/*/*" + _ext_audio) ] else: raise ValueError(f"Unsupported subset value. Found {subset}.") files_paths = sorted(files_paths, key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Create a Dataset for LibriLightLimited, which is the supervised subset of LibriLight dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``10min``, ``1h``, ``10h``] (Default: ``10min``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: assert subset in ["10min", "1h", "10h"], "`subset` must be one of ['10min', '1h', '10h']" root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive) self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, int, int): ``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)`` """ file_path, fileid = self._fileids_paths[n] return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt) def __len__(self) -> int: return len(self._fileids_paths)
import os from pathlib import Path from typing import List, Tuple, Union from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import load_librispeech_item from torchaudio.datasets.utils import extract_archive _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] """ if subset == "10min": files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio) ] elif subset in ["1h", "10h"]: files_paths = [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio) ] if subset == "10h": files_paths += [ (os.path.join(os.path.dirname(p), "..", ".."), str(p.stem)) for p in Path(path).glob("9h/*/*/*/*" + _ext_audio) ] else: raise ValueError(f"Unsupported subset value. Found {subset}.") files_paths = sorted(files_paths, key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Create a Dataset for LibriLightLimited, which is the supervised subset of LibriLight dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``10min`, ``1h``, ``10h``] (Default: ``10min``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: assert subset in ["10min", "1h", "10h"], "`subset` must be one of ['10min', '1h', '10h']" root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive) self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, int, int): ``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)`` """ file_path, fileid = self._fileids_paths[n] return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt) def __len__(self) -> int: return len(self._fileids_paths)
def __getattr__(name: str): if name == "Streamer": import warnings from torchaudio.io import StreamReader warnings.warn( f"{__name__}.{name} has been moved to torchaudio.io.StreamReader. Please use torchaudio.io.StreamReader", DeprecationWarning, ) global Streamer Streamer = StreamReader return Streamer raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return ["Streamer"]
_INITIALIZED = False _LAZILY_IMPORTED = [ "Streamer", "SourceStream", "SourceAudioStream", "SourceVideoStream", "OutputStream", ] def _init_extension(): import torch import torchaudio try: torchaudio._extension._load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError( "Stream API requires FFmpeg libraries (libavformat and such). Please install FFmpeg 4." ) from err try: torch.ops.torchaudio.ffmpeg_init() except RuntimeError as err: raise RuntimeError( "Stream API requires FFmpeg binding. Please set BUILD_FFMPEG=1 when building from source." ) from err global _INITIALIZED _INITIALIZED = True def __getattr__(name: str): if name in _LAZILY_IMPORTED: if not _INITIALIZED: _init_extension() from . import streamer item = getattr(streamer, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess from typing import Callable, List import pytest from jina import DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=data_generator(), request_size=request_size, return_results=True, ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None def filter_none(elements): return list(filter(lambda e: e is not None, elements)) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_text'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_text'), [['r', 0], ['c', 0], ['cc', 10]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: assert ( len( filter_none( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) ) == count ) return validate flow = Flow(return_results=True).add(uses=TransformerTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_path]}, return_results=True, ) validate_traversal(docs_per_path)(resp) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess from typing import Callable, List import pytest from jina import DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=data_generator(), request_size=request_size, return_results=True, ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None def filter_none(elements): return list(filter(lambda e: e is not None, elements)) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_text'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_text'), [['r', 0], ['c', 0], ['cc', 10]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: assert ( len( filter_none( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) ) == count ) return validate flow = Flow(return_results=True).add(uses=TransformerTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_path]}, return_results=True, ) validate_traversal(docs_per_path)(resp) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
import sys from typing import Callable import pytest from langchain_core.runnables.base import RunnableLambda from langchain_core.runnables.utils import ( get_function_nonlocals, get_lambda_source, indent_lines_after_first, ) @pytest.mark.skipif( sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." ) @pytest.mark.parametrize( ("func", "expected_source"), [ (lambda x: x * 2, "lambda x: x * 2"), (lambda a, b: a + b, "lambda a, b: a + b"), (lambda x: x if x > 0 else 0, "lambda x: x if x > 0 else 0"), # noqa: FURB136 ], ) def test_get_lambda_source(func: Callable, expected_source: str) -> None: """Test get_lambda_source function.""" source = get_lambda_source(func) assert source == expected_source @pytest.mark.parametrize( ("text", "prefix", "expected_output"), [ ("line 1\nline 2\nline 3", "1", "line 1\n line 2\n line 3"), ("line 1\nline 2\nline 3", "ax", "line 1\n line 2\n line 3"), ], ) def test_indent_lines_after_first(text: str, prefix: str, expected_output: str) -> None: """Test indent_lines_after_first function.""" indented_text = indent_lines_after_first(text, prefix) assert indented_text == expected_output global_agent = RunnableLambda(lambda x: x * 3) def test_nonlocals() -> None: agent = RunnableLambda(lambda x: x * 2) def my_func(input: str, agent: dict[str, str]) -> str: return agent.get("agent_name", input) def my_func2(input: str) -> str: return agent.get("agent_name", input) # type: ignore[attr-defined] def my_func3(input: str) -> str: return agent.invoke(input) def my_func4(input: str) -> str: return global_agent.invoke(input) def my_func5() -> tuple[Callable[[str], str], RunnableLambda]: global_agent = RunnableLambda(lambda x: x * 3) def my_func6(input: str) -> str: return global_agent.invoke(input) return my_func6, global_agent assert get_function_nonlocals(my_func) == [] assert get_function_nonlocals(my_func2) == [] assert get_function_nonlocals(my_func3) == [agent.invoke] assert get_function_nonlocals(my_func4) == [global_agent.invoke] func, nl = my_func5() assert get_function_nonlocals(func) == [nl.invoke] assert RunnableLambda(my_func3).deps == [agent] assert RunnableLambda(my_func4).deps == [global_agent] assert RunnableLambda(func).deps == [nl]
import sys from typing import Callable import pytest from langchain_core.runnables.base import RunnableLambda from langchain_core.runnables.utils import ( get_function_nonlocals, get_lambda_source, indent_lines_after_first, ) @pytest.mark.skipif( sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." ) @pytest.mark.parametrize( "func, expected_source", [ (lambda x: x * 2, "lambda x: x * 2"), (lambda a, b: a + b, "lambda a, b: a + b"), (lambda x: x if x > 0 else 0, "lambda x: x if x > 0 else 0"), # noqa: FURB136 ], ) def test_get_lambda_source(func: Callable, expected_source: str) -> None: """Test get_lambda_source function.""" source = get_lambda_source(func) assert source == expected_source @pytest.mark.parametrize( "text,prefix,expected_output", [ ("line 1\nline 2\nline 3", "1", "line 1\n line 2\n line 3"), ("line 1\nline 2\nline 3", "ax", "line 1\n line 2\n line 3"), ], ) def test_indent_lines_after_first(text: str, prefix: str, expected_output: str) -> None: """Test indent_lines_after_first function.""" indented_text = indent_lines_after_first(text, prefix) assert indented_text == expected_output global_agent = RunnableLambda(lambda x: x * 3) def test_nonlocals() -> None: agent = RunnableLambda(lambda x: x * 2) def my_func(input: str, agent: dict[str, str]) -> str: return agent.get("agent_name", input) def my_func2(input: str) -> str: return agent.get("agent_name", input) # type: ignore[attr-defined] def my_func3(input: str) -> str: return agent.invoke(input) def my_func4(input: str) -> str: return global_agent.invoke(input) def my_func5() -> tuple[Callable[[str], str], RunnableLambda]: global_agent = RunnableLambda(lambda x: x * 3) def my_func6(input: str) -> str: return global_agent.invoke(input) return my_func6, global_agent assert get_function_nonlocals(my_func) == [] assert get_function_nonlocals(my_func2) == [] assert get_function_nonlocals(my_func3) == [agent.invoke] assert get_function_nonlocals(my_func4) == [global_agent.invoke] func, nl = my_func5() assert get_function_nonlocals(func) == [nl.invoke] assert RunnableLambda(my_func3).deps == [agent] assert RunnableLambda(my_func4).deps == [global_agent] assert RunnableLambda(func).deps == [nl]
"""Standard LangChain interface tests""" from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_community.chat_models.litellm import ChatLiteLLM class TestLiteLLMStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatLiteLLM @property def chat_model_params(self) -> dict: return {"model": "ollama/mistral"} @pytest.mark.xfail(reason="Not yet implemented.") def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model)
"""Standard LangChain interface tests""" from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_community.chat_models.litellm import ChatLiteLLM class TestLiteLLMStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatLiteLLM @property def chat_model_params(self) -> dict: return {"model": "ollama/mistral"} @pytest.mark.xfail(reason="Not yet implemented.") def test_usage_metadata(self, model: BaseChatModel) -> None: super().test_usage_metadata(model)
import logging import platform import warnings from typing import Any, List, Optional, Type, Union from langchain_core.callbacks import ( CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel, Field, model_validator logger = logging.getLogger(__name__) class ShellInput(BaseModel): """Commands for the Bash Shell tool.""" commands: Union[str, List[str]] = Field( ..., description="List of shell commands to run. Deserialized using json.loads", ) """List of shell commands to run.""" @model_validator(mode="before") @classmethod def _validate_commands(cls, values: dict) -> Any: """Validate commands.""" # TODO: Add real validators commands = values.get("commands") if not isinstance(commands, list): values["commands"] = [commands] # Warn that the bash tool is not safe warnings.warn( "The shell tool has no safeguards by default. Use at your own risk." ) return values def _get_default_bash_process() -> Any: """Get default bash process.""" try: from langchain_experimental.llm_bash.bash import BashProcess except ImportError: raise ImportError( "BashProcess has been moved to langchain experimental." "To use this tool, install langchain-experimental " "with `pip install langchain-experimental`." ) return BashProcess(return_err_output=True) def _get_platform() -> str: """Get platform.""" system = platform.system() if system == "Darwin": return "MacOS" return system class ShellTool(BaseTool): """Tool to run shell commands.""" process: Any = Field(default_factory=_get_default_bash_process) """Bash process to run commands.""" name: str = "terminal" """Name of tool.""" description: str = f"Run shell commands on this {_get_platform()} machine." """Description of tool.""" args_schema: Type[BaseModel] = ShellInput """Schema for input arguments.""" ask_human_input: bool = False """ If True, prompts the user for confirmation (y/n) before executing a command generated by the language model in the bash shell. """ def _run( self, commands: Union[str, List[str]], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run commands and return final output.""" print(f"Executing command:\n {commands}") # noqa: T201 try: if self.ask_human_input: user_input = input("Proceed with command execution? (y/n): ").lower() if user_input == "y": return self.process.run(commands) else: logger.info("Invalid input. User aborted command execution.") return None # type: ignore[return-value] else: return self.process.run(commands) except Exception as e: logger.error(f"Error during command execution: {e}") return None # type: ignore[return-value]
import logging import platform import warnings from typing import Any, List, Optional, Type, Union from langchain_core.callbacks import ( CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel, Field, model_validator logger = logging.getLogger(__name__) class ShellInput(BaseModel): """Commands for the Bash Shell tool.""" commands: Union[str, List[str]] = Field( ..., description="List of shell commands to run. Deserialized using json.loads", ) """List of shell commands to run.""" @model_validator(mode="before") @classmethod def _validate_commands(cls, values: dict) -> Any: """Validate commands.""" # TODO: Add real validators commands = values.get("commands") if not isinstance(commands, list): values["commands"] = [commands] # Warn that the bash tool is not safe warnings.warn( "The shell tool has no safeguards by default. Use at your own risk." ) return values def _get_default_bash_process() -> Any: """Get default bash process.""" try: from langchain_experimental.llm_bash.bash import BashProcess except ImportError: raise ImportError( "BashProcess has been moved to langchain experimental." "To use this tool, install langchain-experimental " "with `pip install langchain-experimental`." ) return BashProcess(return_err_output=True) def _get_platform() -> str: """Get platform.""" system = platform.system() if system == "Darwin": return "MacOS" return system class ShellTool(BaseTool): # type: ignore[override, override] """Tool to run shell commands.""" process: Any = Field(default_factory=_get_default_bash_process) """Bash process to run commands.""" name: str = "terminal" """Name of tool.""" description: str = f"Run shell commands on this {_get_platform()} machine." """Description of tool.""" args_schema: Type[BaseModel] = ShellInput """Schema for input arguments.""" ask_human_input: bool = False """ If True, prompts the user for confirmation (y/n) before executing a command generated by the language model in the bash shell. """ def _run( self, commands: Union[str, List[str]], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run commands and return final output.""" print(f"Executing command:\n {commands}") # noqa: T201 try: if self.ask_human_input: user_input = input("Proceed with command execution? (y/n): ").lower() if user_input == "y": return self.process.run(commands) else: logger.info("Invalid input. User aborted command execution.") return None # type: ignore[return-value] else: return self.process.run(commands) except Exception as e: logger.error(f"Error during command execution: {e}") return None # type: ignore[return-value]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import requests, DocumentArray, Executor from jina_commons import get_logger from jinahub.indexers.searcher.FaissSearcher.faiss_searcher import FaissSearcher from jinahub.indexers.storage.PostgreSQLStorage import PostgreSQLStorage class FaissPostgresSearcher(Executor): """A Compound Indexer made up of a FaissSearcher (for vectors) and a Postgres Indexer""" def __init__( self, dump_path=None, **kwargs, ): super().__init__(**kwargs) # when constructed from rolling update the dump_path is passed via a runtime_arg dump_path = dump_path or kwargs.get('runtime_args').get('dump_path') self.logger = get_logger(self) self._kv_indexer = None self._vec_indexer = None if dump_path: self._vec_indexer = FaissSearcher(dump_path=dump_path, **kwargs) self._kv_indexer = PostgreSQLStorage(**kwargs) else: self.logger.warning( f'No dump path provided for {self}. Use .rolling_update() to re-initialize...' ) @requests(on='/search') def search(self, docs: 'DocumentArray', parameters: Dict = None, **kwargs): if self._kv_indexer and self._vec_indexer: self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters['traversal_paths'] = [ path + 'm' for path in kv_parameters.get('traversal_paths', ['r']) ] self._kv_indexer.search(docs, kv_parameters) else: return
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import requests, DocumentArray, Executor from jina_commons import get_logger from jinahub.indexers.searcher.FaissSearcher.faiss_searcher import FaissSearcher from jinahub.indexers.storage.PostgreSQLStorage.postgres import PostgreSQLStorage class FaissPostgresSearcher(Executor): """A Compound Indexer made up of a FaissSearcher (for vectors) and a Postgres Indexer""" def __init__( self, dump_path=None, **kwargs, ): super().__init__(**kwargs) # when constructed from rolling update the dump_path is passed via a runtime_arg dump_path = dump_path or kwargs.get('runtime_args').get('dump_path') self.logger = get_logger(self) self._kv_indexer = None self._vec_indexer = None if dump_path: self._vec_indexer = FaissSearcher(dump_path=dump_path, **kwargs) self._kv_indexer = PostgreSQLStorage(**kwargs) else: self.logger.warning( f'No dump path provided for {self}. Use .rolling_update() to re-initialize...' ) @requests(on='/search') def search(self, docs: 'DocumentArray', parameters: Dict = None, **kwargs): if self._kv_indexer and self._vec_indexer: self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters['traversal_paths'] = [ path + 'm' for path in kv_parameters.get('traversal_paths', ['r']) ] self._kv_indexer.search(docs, kv_parameters) else: return
import warnings from typing import List, Optional, Type from jina.excepts import BadYAMLVersion from jina.jaml import JAMLCompatible from jina.jaml.parsers.base import VersionedYAMLParser from jina.orchestrate.deployments import Deployment from jina.serve.runtimes.gateway.gateway import BaseGateway def _get_all_parser(cls: Type['JAMLCompatible']): """Get all parsers and legacy parser of a class :param cls: target class :return: a tuple of two elements; first is a list of all parsers, second is the legacy parser for default fallback """ from jina.orchestrate.flow.base import Flow from jina.serve.executors import BaseExecutor if issubclass(cls, Flow): return _get_flow_parser() elif issubclass(cls, BaseExecutor): return _get_exec_parser() elif issubclass(cls, BaseGateway): return _get_gateway_parser() elif issubclass(cls, Deployment): return _get_deployment_parser() else: raise NotImplementedError(f'No parser exists for cls {cls.__name__}') def _get_flow_parser(): from jina.jaml.parsers.flow.v1 import V1Parser return [V1Parser], V1Parser def _get_exec_parser(): from jina.jaml.parsers.executor.legacy import ExecutorLegacyParser return [ExecutorLegacyParser], ExecutorLegacyParser def _get_deployment_parser(): from jina.jaml.parsers.deployment.legacy import DeploymentLegacyParser return [DeploymentLegacyParser], DeploymentLegacyParser def _get_gateway_parser(): from jina.jaml.parsers.gateway.legacy import GatewayLegacyParser return [GatewayLegacyParser], GatewayLegacyParser def get_parser( cls: Type['JAMLCompatible'], version: Optional[str] ) -> 'VersionedYAMLParser': """ .. # noqa: DAR401 :param cls: the target class to parse :param version: yaml version number in "MAJOR[.MINOR]" format :return: parser given the YAML version """ all_parsers, legacy_parser = _get_all_parser(cls) if version: if isinstance(version, (float, int)): version = str(version) for p in all_parsers: if p.version == version: return p() for p in all_parsers: # fallback to major if version.split('.')[0] == p.version: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to parser for version: {p.version}', UserWarning, ) return p() raise BadYAMLVersion(f'{version} is not a valid version number') else: if version is not None: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to legacy parser. ' f'this usually mean you are using a deprecated YAML format.', DeprecationWarning, ) # fallback to legacy parser return legacy_parser() def get_supported_versions(cls) -> List[str]: """List all supported versions :param cls: the class to check :return: supported versions sorted alphabetically """ all_parsers, _ = _get_all_parser(cls) return list(sorted(p.version for p in all_parsers))
import warnings from typing import List, Optional, Type from jina.excepts import BadYAMLVersion from jina.jaml import JAMLCompatible from jina.jaml.parsers.base import VersionedYAMLParser from jina.orchestrate.deployments import Deployment from jina.serve.gateway import BaseGateway def _get_all_parser(cls: Type['JAMLCompatible']): """Get all parsers and legacy parser of a class :param cls: target class :return: a tuple of two elements; first is a list of all parsers, second is the legacy parser for default fallback """ from jina.orchestrate.flow.base import Flow from jina.serve.executors import BaseExecutor if issubclass(cls, Flow): return _get_flow_parser() elif issubclass(cls, BaseExecutor): return _get_exec_parser() elif issubclass(cls, BaseGateway): return _get_gateway_parser() elif issubclass(cls, Deployment): return _get_deployment_parser() else: raise NotImplementedError(f'No parser exists for cls {cls.__name__}') def _get_flow_parser(): from jina.jaml.parsers.flow.v1 import V1Parser return [V1Parser], V1Parser def _get_exec_parser(): from jina.jaml.parsers.executor.legacy import ExecutorLegacyParser return [ExecutorLegacyParser], ExecutorLegacyParser def _get_deployment_parser(): from jina.jaml.parsers.deployment.legacy import DeploymentLegacyParser return [DeploymentLegacyParser], DeploymentLegacyParser def _get_gateway_parser(): from jina.jaml.parsers.gateway.legacy import GatewayLegacyParser return [GatewayLegacyParser], GatewayLegacyParser def get_parser( cls: Type['JAMLCompatible'], version: Optional[str] ) -> 'VersionedYAMLParser': """ .. # noqa: DAR401 :param cls: the target class to parse :param version: yaml version number in "MAJOR[.MINOR]" format :return: parser given the YAML version """ all_parsers, legacy_parser = _get_all_parser(cls) if version: if isinstance(version, (float, int)): version = str(version) for p in all_parsers: if p.version == version: return p() for p in all_parsers: # fallback to major if version.split('.')[0] == p.version: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to parser for version: {p.version}', UserWarning, ) return p() raise BadYAMLVersion(f'{version} is not a valid version number') else: if version is not None: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to legacy parser. ' f'this usually mean you are using a deprecated YAML format.', DeprecationWarning, ) # fallback to legacy parser return legacy_parser() def get_supported_versions(cls) -> List[str]: """List all supported versions :param cls: the class to check :return: supported versions sorted alphabetically """ all_parsers, _ = _get_all_parser(cls) return list(sorted(p.version for p in all_parsers))
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(norm_cfg=norm_cfg))) # # use ResNeSt img_norm img_norm_cfg = dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from mmengine.data import BaseDataSample from .base import BaseEvaluator class ComposedEvaluator: """Wrapper class to compose multiple :class:`DatasetEvaluator` instances. Args: evaluators (Sequence[BaseEvaluator]): The evaluators to compose. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. """ def __init__(self, evaluators: Sequence[BaseEvaluator], collect_device='cpu'): self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.evaluators = evaluators @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta for evaluator in self.evaluators: evaluator.dataset_meta = dataset_meta def process(self, data_samples: BaseDataSample, predictions: dict): """Invoke process method of each wrapped evaluator. Args: data_samples (BaseDataSample): The data samples from the dataset. predictions (dict): The output of the model. """ for evalutor in self.evaluators: evalutor.process(data_samples, predictions) def evaluate(self, size: int) -> dict: """Invoke evaluate method of each wrapped evaluator and collect the metrics dict. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: dict: Evaluation metrics of all wrapped evaluators. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for evaluator in self.evaluators: _metrics = evaluator.evaluate(size) # Check metric name conflicts for name in _metrics.keys(): if name in metrics: raise ValueError( 'There are multiple evaluators with the same metric ' f'name {name}') metrics.update(_metrics) return metrics
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from .base import BaseEvaluator class ComposedEvaluator: """Wrapper class to compose multiple :class:`DatasetEvaluator` instances. Args: evaluators (Sequence[BaseEvaluator]): The evaluators to compose. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. """ def __init__(self, evaluators: Sequence[BaseEvaluator], collect_device='cpu'): self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.evaluators = evaluators @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta for evaluator in self.evaluators: evaluator.dataset_meta = dataset_meta def process(self, data_samples: dict, predictions: dict): """Invoke process method of each wrapped evaluator. Args: data_samples (dict): The data samples from the dataset. predictions (dict): The output of the model. """ for evalutor in self.evaluators: evalutor.process(data_samples, predictions) def evaluate(self, size: int) -> dict: """Invoke evaluate method of each wrapped evaluator and collect the metrics dict. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: metrics (dict): Evaluation metrics of all wrapped evaluators. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for evaluator in self.evaluators: _metrics = evaluator.evaluate(size) # Check metric name conflicts for name in _metrics.keys(): if name in metrics: raise ValueError( 'There are multiple evaluators with the same metric ' f'name {name}') metrics.update(_metrics) return metrics
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from ..builder import HEADS from .anchor_head import AnchorHead @HEADS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes, num_ins, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super(RetinaSepBNHead, self).__init__( num_classes, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" super(RetinaSepBNHead, self).init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from ..builder import HEADS from .anchor_head import AnchorHead @HEADS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes, num_ins, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super(RetinaSepBNHead, self).__init__( num_classes, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_anchors * 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" super(RetinaSepBNHead, self).init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
_base_ = './tood_r101_fpn_ms-2x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), bbox_head=dict(num_dcn=2))
_base_ = './tood_r101_fpn_mstrain_2x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), bbox_head=dict(num_dcn=2))
from collections.abc import Sequence from typing import Callable from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[tuple[AgentAction, str]]], list[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables), ) if missing_vars: msg = f"Prompt missing required variables: {missing_vars}" raise ValueError(msg) if not hasattr(llm, "bind_tools"): msg = "This function requires a bind_tools() method be implemented on the LLM." raise ValueError( msg, ) llm_with_tools = llm.bind_tools(tools) return ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]), ) | prompt | llm_with_tools | ToolsAgentOutputParser() )
from collections.abc import Sequence from typing import Callable from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[tuple[AgentAction, str]]], list[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: msg = f"Prompt missing required variables: {missing_vars}" raise ValueError(msg) if not hasattr(llm, "bind_tools"): msg = "This function requires a bind_tools() method be implemented on the LLM." raise ValueError( msg, ) llm_with_tools = llm.bind_tools(tools) return ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]) ) | prompt | llm_with_tools | ToolsAgentOutputParser() )
import logging import sentry_sdk from backend.util.settings import Settings from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.launchdarkly import LaunchDarklyIntegration from sentry_sdk.integrations.logging import LoggingIntegration def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={ "enable_logs": True, }, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
import sentry_sdk from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init(dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0)
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than ``SparseCoSENTLoss`` or ``SparseAnglELoss``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseAnglELoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseAngleLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than ``SparseCoSENTLoss`` or ``SparseAnglELoss``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseAnglELoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
from typing import Iterator from typing import Tuple import torch from keras.src.backend.common.stateless_scope import in_stateless_scope from keras.src.ops.operation import Operation class TorchLayer(torch.nn.Module): @property def torch_params(self): if not hasattr(self, "_torch_params"): self._track_variables() return self._torch_params def _post_build(self): # Do not track variables when in a stateless scope. # The variables are not initialized. if in_stateless_scope(): return self._track_variables() def _track_variables(self): # set torch_params attribute will have module automatically track # parameters. self._torch_params = torch.nn.ParameterDict( {variable.path: variable.value for variable in self.variables} ) def named_parameters( self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True, ) -> Iterator[Tuple[str, torch.nn.Parameter]]: if not hasattr(self, "_torch_params"): self._track_variables() return torch.nn.Module.named_parameters( self, prefix, recurse, remove_duplicate ) def forward(self, *args, **kwargs): return Operation.__call__(self, *args, **kwargs) def _setattr_hook(self, name, value): from keras.src.layers import Layer if ( isinstance(value, torch.nn.Module) and not isinstance(value, Layer) and not name == "_torch_params" ): from keras.src.utils.torch_utils import TorchModuleWrapper if not isinstance(self, TorchModuleWrapper): value = TorchModuleWrapper(value) return name, value def _post_track_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path not in self.torch_params: self.torch_params[variable.path] = variable.value def _post_untrack_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path in self.torch_params: self.torch_params.pop(variable.path)
from typing import Iterator from typing import Tuple import torch from keras.src.backend.common.stateless_scope import in_stateless_scope from keras.src.ops.operation import Operation class TorchLayer(torch.nn.Module): def _post_build(self): # Do not track variables when in a stateless scope. # The variables are not initialized. if in_stateless_scope(): return self._track_variables() def _track_variables(self): # set torch_params attribute will have module automatically track # parameters. self.torch_params = torch.nn.ParameterDict( {variable.path: variable.value for variable in self.variables} ) def named_parameters( self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True, ) -> Iterator[Tuple[str, torch.nn.Parameter]]: if not hasattr(self, "torch_params"): self._track_variables() return torch.nn.Module.named_parameters( self, prefix, recurse, remove_duplicate ) def forward(self, *args, **kwargs): return Operation.__call__(self, *args, **kwargs) def _setattr_hook(self, name, value): from keras.src.layers import Layer if ( isinstance(value, torch.nn.Module) and not isinstance(value, Layer) and not name == "torch_params" ): from keras.src.utils.torch_utils import TorchModuleWrapper if not isinstance(self, TorchModuleWrapper): value = TorchModuleWrapper(value) return name, value def _post_track_variable(self, variable): if hasattr(self, "torch_params"): if variable.path not in self.torch_params: self.torch_params[variable.path] = variable.value def _post_untrack_variable(self, variable): if hasattr(self, "torch_params"): if variable.path in self.torch_params: self.torch_params.pop(variable.path)
__version__ = '0.31.2' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.31.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True def build(self, input_shape): self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from torch import nn from mmengine.model.efficient_conv_bn_eval import \ turn_on_efficient_conv_bn_eval_for_single_model from mmengine.testing import assert_allclose from mmengine.utils import is_installed from mmengine.utils.dl_utils import TORCH_VERSION from mmengine.utils.version_utils import digit_version mmcv_is_installed = is_installed('mmcv') class BackboneModel(nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) if mmcv_is_installed: from mmcv.cnn import ConvModule conv0 = nn.Conv2d(6, 6, 6) bn0 = nn.BatchNorm2d(6) self.mod1 = ConvModule.create_from_conv_bn(conv0, bn0) self.conv1 = nn.Conv2d(6, 6, 6) self.bn1 = nn.BatchNorm2d(6) self.conv2 = nn.Conv2d(6, 6, 6) self.bn2 = nn.BatchNorm2d(6) self.conv3 = nn.Conv2d(6, 6, 6) self.bn3 = nn.BatchNorm2d(6) def forward(self, x): if mmcv_is_installed: # this ConvModule can use efficient_conv_bn_eval feature x = self.mod1(x) # this conv-bn pair can use efficient_conv_bn_eval feature x = self.bn1(self.conv1(x)) # this conv-bn pair can use efficient_conv_bn_eval feature # only for the second `self.conv2` call. x = self.bn2(self.conv2(self.conv2(x))) # this conv-bn pair can use efficient_conv_bn_eval feature # just for the first forward of the `self.bn3` x = self.bn3(self.bn3(self.conv3(x))) return x @unittest.skipIf( digit_version(TORCH_VERSION) < digit_version('1.8'), reason='torch.fx needs Pytorch 1.8 or higher') class TestEfficientConvBNEval(TestCase): """Test the turn_on_efficient_conv_bn_eval function.""" def test_efficient_conv_bn_eval(self): model = BackboneModel() model.eval() input = torch.randn(64, 6, 32, 32) output = model(input) turn_on_efficient_conv_bn_eval_for_single_model(model) output2 = model(input) print((output - output2).abs().max().item()) assert_allclose(output, output2)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from torch import nn from mmengine.model.efficient_conv_bn_eval import \ turn_on_efficient_conv_bn_eval_for_single_model from mmengine.testing import assert_allclose from mmengine.utils import is_installed from mmengine.utils.dl_utils import TORCH_VERSION from mmengine.utils.version_utils import digit_version mmcv_is_installed = is_installed('mmcv') class BackboneModel(nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) if mmcv_is_installed: from mmcv.cnn import ConvModule conv0 = nn.Conv2d(6, 6, 6) bn0 = nn.BatchNorm2d(6) self.mod1 = ConvModule.create_from_conv_bn(conv0, bn0) self.conv1 = nn.Conv2d(6, 6, 6) self.bn1 = nn.BatchNorm2d(6) self.conv2 = nn.Conv2d(6, 6, 6) self.bn2 = nn.BatchNorm2d(6) self.conv3 = nn.Conv2d(6, 6, 6) self.bn3 = nn.BatchNorm2d(6) def forward(self, x): if mmcv_is_installed: # this ConvModule can use efficient_conv_bn_eval feature x = self.mod1(x) # this conv-bn pair can use efficient_conv_bn_eval feature x = self.bn1(self.conv1(x)) # this conv-bn pair cannot use efficient_conv_bn_eval feature # because `self.conv2` is used twice x = self.bn2(self.conv2(self.conv2(x))) # this conv-bn pair can use efficient_conv_bn_eval feature # just for the first forward of the `self.bn3` x = self.bn3(self.bn3(self.conv3(x))) return x @unittest.skipIf( digit_version(TORCH_VERSION) < digit_version('1.8'), reason='torch.fx needs Pytorch 1.8 or higher') class TestEfficientConvBNEval(TestCase): """Test the turn_on_efficient_conv_bn_eval function.""" def test_efficient_conv_bn_eval(self): model = BackboneModel() model.eval() input = torch.randn(64, 6, 32, 32) output = model(input) turn_on_efficient_conv_bn_eval_for_single_model(model) output2 = model(input) print((output - output2).abs().max().item()) assert_allclose(output, output2)